

GUIA FILTROS MEMBRANA FILTER-LAB®

MATERIAL MEMBRANA	POROS (µm)	DIAMETROS	FORMATOS	COLOR	SUPERFICIE	HUMECTACION
Acetato de celulosa	0.22	13	no esteril	blanco	lisa	Hidrofilica
Г 0	0.45	25				
O CH₃ O CH₃	0.8	47				
9 HO 70	3.0	90				
HO	5.0	142				
OH ₃ CH ₃		293				
Fatamas maintas asludasa	0.00	40	السمام	blanca		l II don Elion
Esteres mixtos celulosa	0.22	13	esteril	blanco	cuadriculada	Hidrofilica
(MCE)	0.45	25	no esteril	negro	lisa	
Го	0.65	47				
of the complete of the complet	1.0	90				
100000000000000000000000000000000000000	3.0	142				
L ON'S ON'S	5.0	293				
	8.0					
Nitrato de celulosa	0.2	47	esteril	blanco	cuadriculada	hidrofilica
(Rollos)	0.2 high flow	50	55.50111	negro		5111100
(1.101100)	0.2 mgm now 0.45	30		v erde		
/ O-N' 0	0.45 high flow			Voluc		
ON ONO	0.45 high flow 0.65					
000000	0.03					
O 0 0 /	1.2					
	1.2					
Poliamida (Nylon)	0.22	13	no esteril	blanco	lisa	Hidrofilica
	0.45	25				
[유 변 [*] 유	5.0	47				
#[]8#		90				
		142				
H[T B T T H].		293				
Polietersulfona (PES)	0.1	25	no esteril	blanco	lisa	Hidrofilica
	0.1	47	no estem	Dianco	lisa	Tilutoililea
X -	0.22 Ar-o+ 0.45	41				
PVDF [H F]	0.22	25	no esteril	blanco	lisa	Hidrofóbica
tc-c-	0.45	47				
PTFE	0.22	13	no esteril	blanco	lisa	Hidrofóbica
	0.45	25	2 2 23.00			
F F	1.2	47				
R - Ç - Ç - R	5.0	90				
F F 	0.0	142				
		293				
Polipropileno /	0.22	25	no esteril	blanco	lisa	Hidrofóbica
(PP) $\left(\begin{array}{c} CH_2 - CH_{\frac{1}{n}} \end{array}\right)_n$	0.45	47				
CH ₃						
Policarbonato (PC)	0.1	13	no esteril	blanco	lisa	Hidrofilica
• •	0.2	25	esteril			
CH ₂ _ O	0.4	47				
	0.8					
└ └ ĊH₃ └ ¹n	2.0					
	3.0					
	5.0					
	8.0					
	12.0					
	14.0					
	20.0					
	20.0					

TEMPERATURA MAX.	COMPATIBILIDAD QUIMICA pH	ADSORCION PROTEINAS	ESTERILIZACION	PAGINA	
≤ 50°C 4 - 8 Muestras acuosas Muestras biológicas Alcoholes Aceites Hidrocarburos		Muy baja	Radiación γ Oxido de etileno Autoclave a 121°C Calor seco	84	
≤ 90°C	4 - 8 Muestras acuosas	Baja	Radiación γ Oxido de etileno Autoclave a 121ºC	86	
≤ 130°C	4 - 8 Muestras acuosas	Elev ada	Radiación γ Oxido de etileno Autoclave a 121°C	92	
≤ 100°C	3 - 14 Soluciones alcalina Muestras orgánicas suaves	Elev ada	Radiación γ Oxido de etileno Autoclave a 121°C	94	
≤ 90°C	1 - 14 Muestras biológicas Disolv entes	Muy baja	Radiación γ Oxido de etileno Autoclave a 121°C	96	
≤ 100°C	1 - 14 Disolventes fuertes	Muy baja	Radiación γ Autoclav e 121°C	102	
≤ 130°C	1 - 14 Disolv entes puros (ex cepto ácido fosfórico)	-	Radiación γ Oxido de etileno Autoclave a 121°C	98	
≤ 50°C	1 - 14	Nula	Radiación γ Autoclave 121°C	100	
≤ 140°C	4 - 8 Muestras acuosas Muestras biológicas	Baja	Autoclave a 121°C	104	

Filtros membrana Acetato de Celulosa

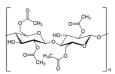
Baja adsorción de proteínas para la filtración de muestras biológicas y acuosas

Descripción

El acetato de celulosa es un material hidrofílico y con bajísima adsorción no específica de proteínas. Estas características hacen que sea la membrana adecuada en el caso de la filtración de muestras biológicas.

Asimismo se aconseja su uso en la filtración de muestras acuosas, la mayoría de alcoholes, aceites y hidrocarburos.

Está disponible en poros de 0.22 hasta 5.0 µm y en diámetros desde 13 hasta 293 mm de diámetro.



Ventajas

- ☐ Naturaleza hidrofílica.
- Bajísima adsorción no específica de proteínas.
- Estructura de los poros muy uniforme.
- ☐ Buena resistencia térmica y mecánica.
- ☐ Autoclavable a 121°C
- ☐ Fabricados libres de carga estática

Aplicaciones

- ☐ Esterilización de muestras con proteínas y enzimas.
- ☐ Esterilización de fluidos biológicos.
- ☐ Esterilización de medios de cultivo.
- ☐ Recuperación de organismos gram negativos.
- ☐ Filtración de muestras acuosas.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

0.22 µm	4.0 bar 400 Kpa
0.45 µm	3.1 bar 310 Kpa
0.8 µm	1.5 bar 150 Kpa
3.0 µm	0.5 bar 50 Kpa
5.0 µm	0.4 bar 40 Kpa

Caudal con agua (ml/min /cm²)△p=0.9bar | 90 Kpa aprox.:

0.22 µm	18,5 ml/min/cm ²
0.45 µm	40 ml/min/cm ²
0.8 µm	150 ml/min/cm ²
3.0 µm	500 ml/min/cm ²
5.0 µm	900 ml/min/cm ²

Caudal con aire (ml/min /cm2):

0.22 µm	-
0.45 µm	25 ml/min/cm ²
0.8 µm	50 ml/min/cm ²
3.0 um	180 ml/min/cm ²

3.0 μm 180 ml/min/cm² 5.0 μm 280 ml/min/cm²

Espesor: 0.115– 0.140 mm

Material membrana

Diacetato y triacetato de celulosa

Poros: 0.22, 0.45 y 0.8 μm

Diámetros: 13, 25, 47, 90, 142 y 293 mm.

Temperatura máxima de uso ≤ 50°C

Máxima presión de trabajo: 8.7 psi

Extraíbles con agua < 0.1%

Compatibilidad química: 4 – 8 pH

Reacción al agua: hidrofílica

Adsorción: Baja adsorción no específica de

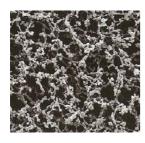
proteínas

Esterilización: Autoclave a 121°C ó 134°C, radiación γ , calor seco a 134°C, óxido de etileno

Información para pedidos: Filtros membrana acetato de celulosa

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
	MCA022013N	Acetato celulosa	13 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
Ø	MCA045013N	Acetato celulosa	13 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
ww Ø	MCA080013N	Acetato celulosa	13 mm	0.8 _µ m	blanco	lisa	no estéril	100 unids.
13	MCA300013N	Acetato celulosa	13 mm	3.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCA500013N	Acetato celulosa	13 mm	5.0 µm	blanco	lisa	no estéril	100 unids.
	MCA022025N	Acetato celulosa	25 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
ø	MCA045025N	Acetato celulosa	25 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
mm Ø	MCA080025N	Acetato celulosa	25 mm	0.8 _µ m	blanco	lisa	no estéril	100 unids.
25	MCA300025N	Acetato celulosa	25 mm	$3.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCA500025N	Acetato celulosa	25 mm	$5.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCA022047N	Acetato celulosa	47 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
ø	MCA045047N	Acetato celulosa	47 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
, mm	MCA080047N	Acetato celulosa	47 mm	$0.8~\mu m$	blanco	lisa	no estéril	100 unids.
47	MCA300047N	Acetato celulosa	47 mm	$3.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCA500047N	Acetato celulosa	47 mm	$5.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCA022090N	Acetato celulosa	90 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
mm Ø	MCA045090N	Acetato celulosa	90 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
E	MCA080090N	Acetato celulosa	90 mm	$0.8~\mu m$	blanco	lisa	no estéril	100 unids.
90	MCA300090N	Acetato celulosa	90 mm	$3.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCA500090N	Acetato celulosa	90 mm	$5.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCA022142G	Acetato celulosa	142 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
ø	MCA045142G	Acetato celulosa	142 mm	$0.45~\mu m$	blanco	lisa	no estéril	25 unids.
, mm	MCA080142G	Acetato celulosa	142 mm	$0.8~\mu m$	blanco	lisa	no estéril	25 unids.
142	MCA300142G	Acetato celulosa	142 mm	$3.0~\mu m$	blanco	lisa	no estéril	25 unids.
	MCA500142G	Acetato celulosa	142 mm	$5.0~\mu m$	blanco	lisa	no estéril	25 unids.
	MCA022293G	Acetato celulosa	293 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
ø	MCA045293G	Acetato celulosa	293 mm	$0.45~\mu m$	blanco	lisa	no estéril	25 unids.
293 mmø	MCA080293G	Acetato celulosa	293 mm	$0.8~\mu m$	blanco	lisa	no estéril	25 unids.
293	MCA300293G	Acetato celulosa	293 mm	$3.0~\mu m$	blanco	lisa	no estéril	25 unids.
	MCA500293G	Acetato celulosa	293 mm	5.0 _µ m	blanco	lisa	no estéril	25 unids.

Filtros membrana Ésteres Mixtos de Celulosa (MCE)


Filtración de muestras acuosas, estudios de partículas, análisis microbiológicos

Descripción

Filtros membrana fabricados con una mezcla de nitrato de celulosa y de acetato de celulosa, un compuesto totalmente inerte.

Estás membranas se caracterizan por tener una superficie mas uniforme y lisa que la nitrocelulosa, lo cual hace que sea muy utilizada en análisis microbiológicos, estudios de partículas, chemotaxis, etc.

Están disponibles en una gran variedad de poros, diámetros, en formato estéril y no estéril, e incluso con la superficie cuadriculada, con retículas de 3.1 mm² para su uso en el recuento de colonias.

Ventajas

- Naturaleza hidrofílica.
- ☐ Superficie de la membrana muy uniforme.
- Elevada porosidad.
- ☐ Estructura de los poros muy regular.
- Amplia gama de poros, de diámetros y de formatos.
- ☐ Elevadísima pureza: libre de tritón.
- Biológicamente inerte.

CH ₃ O CH ₃	0	0=N*	0=N+	N*-0.
CH ₃		O=N O.	ő	6 /

Aplicaciones

- 0.22 µm
- ☐ Esterilización de muestras.
- ■Análisis microbiológicos.
- □Ensayos biológicos.
- □Análsis de legionella según ISO 11731 parte II
- 0.45 um
- ☐Clarificación de muestras acuosas.
- ☐Retención y análisis de partículas.
- □Análisis microbiológico.
- □Ensayos de fluorescencia.
- ☐Monitorización de partículas.

0.65 µm

- Determinación del índice de colmatación.
- ☐Retención de microorganismos y algas.

$0.8~\mu m$

- □Determinación de la contaminación de los medios destilados en hidrocarburos según EN 12662.
- 1.0 µm
- ☐Clarificación de muestras acuosas.
- ■Análisis de aire.
- □Ensayos de fluorescencia.

3.0 µm

- □Retención y análisis de partículas.
- □Control de calidad de fluidos.

5.0 µm

- ☐Retención y análisis de partículas.
- □Control de calidad de fluidos.

8.0 µm

- ☐Retención y análisis de partículas.
- ☐Prefiltración de muestras.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

0.22 µm	3.62 bar 362 Kpa
0.45 µm blanca	2.23 bar 223 Kpa
0.45 µm negra	2.35 bar 235 Kpa
0.65 µm	1.18 bar 118 Kpa
0.8 µm	0.95 bar 95 Kpa
1.0 µm	0.77 bar 77 Kpa
3.0 µm	0.69 bar 69 Kpa
5.0 µm	0.56 bar 56 Kpa
8.0 µm	0.40 bar 40 Kpa

Caudal con agua (ml/min /cm 2) \triangle p=0.7 bar | 70 Kpa aprox.:

0.22 µm	19 ml/min/cm ²
0.45 µm blanca	60 ml/min/cm ²
0.45 µm negra	60 ml/min/cm ²
0.65 µm	135 ml/min/cm ²
0.8 µm	180 ml/min/cm ²
1.0µm	270 ml/min/cm ²
3.0 µm	320 ml/min/cm ²
5.0 µm	560 ml/min/cm ²
8.0 µm	600 ml/min/cm ²

Caudal con aire (ml/min /cm²):

0.22 µm	2	ml/min/cm ²
0.45 µm	5	ml/min/cm ²
0.65 µm	9	ml/min/cm ²
0.8 µm	15	ml/min/cm ²
1.0µm	20	ml/min/cm ²
3.0 µm	28	ml/min/cm ²
5.0 µm	30	ml/min/cm ²
8.0 um	63	ml/min/cm ²

Porosidad

0.22 µm	75%
0.45 µm	79%
0.65 µm	81%
0.8 µm	82%
1.0µm	82%
3.0 µm	83%
5.0 µm	84%
8.0 µm	84%

Espesor: 0.100 – 0.150 mm

Material membrana

Ésteres mixtos de celulosa

Diámetros: 13, 25, 47, 90, 142 y 293 mm.

Temperatura máxima de uso ≤ 90°C

Máxima presión de trabajo: 8.7 psi

Extraíbles con agua < 0.2%

Compatibilidad química: 4 – 8 pH

Reacción al agua: hidrofílica

Adsorción: Baja adsorción no específica de

proteínas

Esterilización: No

Información para pedidos: Filtros membrana ésteres mixtos de celulosa

BLANCA, LISA, NO ESTERIL

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
	MCE022013N	Esteres mixtos cel.	13 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
	MCE045013N	Esteres mixtos cel.	13 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
~	MCE065013N	Esteres mixtos cel.	13 mm	$0.65~\mu m$	blanco	lisa	no estéril	100 unids.
mmø	MCE080013N	Esteres mixtos cel.	13 mm	$0.8~\mu m$	blanco	lisa	no estéril	100 unids.
13 n	MCE100013N	Esteres mixtos cel.	13 mm	1.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE300013N	Esteres mixtos cel.	13 mm	$3.0~\mu m$	blanco	lisa	no estéril	100 unids.
	MCE500013N	Esteres mixtos cel.	13 mm	5.0 µm	blanco	lisa	no estéril	100 unids.
	MCE800013N	Esteres mixtos cel.	13 mm	8.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE022025N	Esteres mixtos cel.	25 mm	0,22 µm	blanco	lisa	no estéril	100 unids.
	MCE045025N	Esteres mixtos cel.	25 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
	MCE065025N	Esteres mixtos cel.	25 mm	0.65 _µ m	blanco	lisa	no estéril	100 unids.
mmø	MCE080025N	Esteres mixtos cel.	25 mm	0.8 _µ m	blanco	lisa	no estéril	100 unids.
25 n	MCE100025N	Esteres mixtos cel.	25 mm	1.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE300025N	Esteres mixtos cel.	25 mm	3.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE500025N	Esteres mixtos cel.	25 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE800025N	Esteres mixtos cel.	25 mm	8.0 _µ m	blanco	lisa	no estéril	100 unids.
æ	MCE022037N	Esteres mixtos cel.	37 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
mmø	MCE045037N	Esteres mixtos cel.	37 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
37	MCE100037N	Esteres mixtos cel.	37 mm	1.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE022047N	Esteres mixtos cel.	47 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
	MCE045047N	Esteres mixtos cel.	47 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
_	MCE065047N	Esteres mixtos cel.	47 mm	0.65 _µ m	blanco	lisa	no estéril	100 unids.
E Ø	MCE080047N	Esteres mixtos cel.	47 mm	0.8 _µ m	blanco	lisa	no estéril	100 unids.
47 mmØ	MCE100047N	Esteres mixtos cel.	47 mm	1.0 _µ m	blanco	lisa	no estéril	100 unids.
7	MCE300047N	Esteres mixtos cel.	47 mm	3.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE500047N	Esteres mixtos cel.	47 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE800047N	Esteres mixtos cel.	47 mm	8.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE022090N	Esteres mixtos cel.	90 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
	MCE045090N	Esteres mixtos cel.	90 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
	MCE065090N	Esteres mixtos cel.	90 mm	0.65 _µ m	blanco	lisa	no estéril	100 unids.
mmø	MCE080090N	Esteres mixtos cel.	90 mm	0.8 _µ m	blanco	lisa	no estéril	100 unids.
30 m	MCE100090N	Esteres mixtos cel.	90 mm	1.0 _µ m	blanco	lisa	no estéril	100 unids.
0,	MCE300090N	Esteres mixtos cel.	90 mm	3.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE500090N	Esteres mixtos cel.	90 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE800090N	Esteres mixtos cel.	90 mm	8.0 _µ m	blanco	lisa	no estéril	100 unids.
	MCE022142G	Esteres mixtos cel.	142 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
	MCE045142G	Esteres mixtos cel.	142 mm	0.45 _µ m	blanco	lisa	no estéril	25 unids.
æ	MCE065142G	Esteres mixtos cel.	142 mm	0.65 _µ m	blanco	lisa	no estéril	25 unids.
142 mmØ	MCE080142G	Esteres mixtos cel.	142 mm	0.8 _µ m	blanco	lisa	no estéril	25 unids.
142	MCE100142G	Esteres mixtos cel.	142 mm	1.0 _µ m	blanco	lisa	no estéril	25 unids.
	MCE300142G	Esteres mixtos cel.	142 mm	3.0 _µ m	blanco	lisa	no estéril	25 unids.
	MCE500142G	Esteres mixtos cel.	142 mm	5.0 _µ m	blanco	lisa	no estéril	25 unids.
	MCE800142G	Esteres mixtos cel.	142 mm	8.0 _µ m	blanco	lisa	no estéril	25 unids.
	=-		=	σιο μιτι	3.000			

Información para pedidos: Filtros membrana ésteres mixtos de celulosa

BLANCA, LISA, NO ESTERIL

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
	MCE022293G	Esteres mixtos cel.	293 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
	MCE045293G	Esteres mixtos cel.	293 mm	$0.45~\mu m$	blanco	lisa	no estéril	25 unids.
	MCE065293G	Esteres mixtos cel.	293 mm	$0.65~\mu m$	blanco	lisa	no estéril	25 unids.
mmØ	MCE080293G	Esteres mixtos cel.	293 mm	$0.8~\mu m$	blanco	lisa	no estéril	25 unids.
~	MCE100293G	Esteres mixtos cel.	293 mm	$1.0~\mu m$	blanco	lisa	no estéril	25 unids.
29;	MCE300293G	Esteres mixtos cel.	293 mm	$3.0~\mu m$	blanco	lisa	no estéril	25 unids.
	MCE500293G	Esteres mixtos cel.	293 mm	5.0 µm	blanco	lisa	no estéril	25 unids.
	MCE800293G	Esteres mixtos cel.	293 mm	$8.0~\mu m$	blanco	lisa	no estéril	25 unids.

BLANCA, CUADRICULADA, NO ESTERIL

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
Ø	MCE022047WGN	Esteres mixtos cel.	47 mm	0,22 _µ m	blanco	cuadriculada	no estéril	100 unids.
mm.		Esteres mixtos cel.	47 mm	$0.45~\mu m$	blanco	cuadriculada	no estéril	100 unids.
47	MCE080047WGN	Esteres mixtos cel.	47 mm	$0.80~\mu m$	blanco	cuadriculada	no estéril	100 unids.

NEGRA, CUADRICULADA, NO ESTERIL

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
B	MCE022047BGN	Esteres mixtos cel.	47 mm	0,22 _µ m	negro	cuadriculada	no estéril	100 unids.
E E	MCE022047BGN MCE045047BGN	Esteres mixtos cel.	47 mm	$0.45~\mu m$	negro	cuadriculada	no estéril	100 unids.
47	MCE080047BGN	Esteres mixtos cel.	47 mm	$0.80~\mu m$	negro	cuadriculada	no estéril	100 unids.

BLANCA, CUADRICULADA, ESTERIL

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
	MCE022047WGSN	Esteres mixtos cel.	47 mm	0,22 _µ m	blanco	cuadriculada	estéril	100 unids.
Ø	MCE045047WGSN	Esteres mixtos cel.	47 mm	$0.45~\mu m$	blanco	cuadriculada	estéril	100 unids.
		Esteres mixtos cel.	47 mm	$0.65~\mu m$	blanco	cuadriculada	estéril	100 unids.
47	MCE080047WGSN	Esteres mixtos cel.	47 mm	$0.8~\mu m$	blanco	cuadriculada	estéril	100 unids.
		Esteres mixtos cel.	47 mm	1.2 µm	blanco	cuadriculada	estéril	100 unids.

NEGRA, CUADRICULADA, ESTERIL

		Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
ømm		MCE022047BGSN	Esteres mixtos cel.	47 mm	0,22 _µ m	negro	cuadriculada	estéril	100 unids.
	ø	MCE045047BGSN	Esteres mixtos cel.	47 mm	$0.45~\mu m$	negro	cuadriculada	estéril	100 unids.
		MCE065047BGSN	Esteres mixtos cel.	47 mm	$0.65~\mu m$	negro	cuadriculada	estéril	100 unids.
	47	MCE080047BGSN	Esteres mixtos cel.	47 mm	$0.8~\mu m$	negro	cuadriculada	estéril	100 unids.
l		MCE120047BGSN	Esteres mixtos cel.	47 mm	1.2 _u m	negro	cuadriculada	estéril	100 unids.

Membranas para blotting FILTER-LAB® TM

Transferencia de proteínas según diferentes técnicas en laboratorios de biotecnología

Descripción

Las membranas para blotting FILTER-LAB® se utilizan habitualmente en biotecnología en técnicas de transferencia de proteínas, western, dot y dot slot, transferencia tradicional de DNA y RNA, detección de ácidos nucleicos, northerns y southerns. Esta familia está formada por membranas de materiales distintos: polifluoruro de vinilideno (PVDF), nitrocelulosa y poliamida (nylon).

Se suministran en rollos de 300 mm de ancho y una longitud de 3 metros, y en hojas de 20 x 20 cm.

Parámetros técnicos	TM NITRO		TM PVDF		TM NYLON		
	0.22 μm	0.45 μm	0.22 μm	0.45 μm	0.22 μm	0.45 μm	
Punto de burbuja (kg/cm² a 10 psi)	3.65	2.11	=	-	3.51	2.11	
Caudal (mls/min/cm² a 10 psi)	19	51	-	-	9.9	27	
Espesor (µm)	150	± 10	40 - 250		65 - 125		
Nivel extraíbles (%)	<	: 4		-		< 0.2	
Captación de proteínas (µg/cm² BSA)	160		1	125		350	
Maxima temperatura (°C)	356		-		180		

Formatos y medidas

20 x 20

Dimensiones: medidas en cm

Presentación: Según medida de las hojas

30 x 300

Dimensiones: Ancho en cm x longitud en cm

Presentación: Unitaria

Información para pedidos. Membranas de transferencia FILTER-LAB® TM

BLT 1 Me BLT 1 Medio, aspiración media

Material membrana	Poro _µ m	Formato	Medidas: ancho x largo (cm)	unids/paq.	Cod.
Nitrocelulosa	0.22	Hojas	20 x 20	10	TMNC 0222020
Nitrocelulosa	0.22	Rollo	30 x 300	1	TMBNC022/30300
Nitrocelulosa	0.45	Hojas	20 x 20	10	TMNC 0452020
Nitrocelulosa	0.45	Rollo	30 x 300	1	TMBNC045/30300
PVDF	0.22	Hojas	20 x 20	10	TMPV0222020
PVDF	0.22	Rollo	30 x 300	1	TMBPV022/30300
PVDF	0.45	Hojas	20 x 20	10	TMPV0452020
PVDF	0.45	Rollo	30 x 300	1	TMBPV045/30300
Nylon	0.22	Hojas	20 x 20	10	TMNY0222020
Nylon	0.22	Rollo	30 x 300	1	TMBNY022/30300
Nylon	0.45	Hojas	20 x 20	10	TMNY0452020

	TM Nitro	TM PVDF	TM Nylon
Descripción	Una de las membranas mas usadas en aplicaciones de análisis y investigación. Minimiza la cantidad de agente humectante y tiene un nivel de extractables muy bajo	Esta membrana de PVDF tiene una elevada adsoción de proteínas, por lo que durante la transferencia no se perderán. Su estructura de poro abierto hace que las proteínas unidas o no unidas sean mas fáciles de eliminar	Su estructura de poro abierto permite la máx ima accesibilidad de secuencias. Ideal para aplicaciones con carga baja
Composición	100% nitrocelulosa pura	100% Polifluoruro de Vinilideno	100% Ny lon 6
Aplicaciones	 Transferencia de ácidos nucleicos y proteínas Westerns blotting Southerns blotting Northerns blotting Hibridaciones múltiples 	 Westerns blotting Ensay os de unión Análisis de aminoácidos Sequenciación de proteínas Transferencia Dot slot Visualización de glicoproteínas Análisis de lipopolisacáridos 	 Transferencia Dot slot Clarificación de muestras acuosas Cultivos celulares Transferencias de placas y colonias
Métodos detección	Fluorescencia Marcaje radioactiv o Detección cromogenica	 Conjugados de anticuerpos enzimáticos Detección cromogenica Quimioluminiscencia Direct Stain 	Fluorescencia Marcaje radioactiv o Detección cromogenica
Compatibilidad colorantes	Amido black India ink Ponceau-S red Colloidal gold CPTS	Coomasie brilliant blue Amido black India ink Ponceau-S red Colloidal gold CPTS Toluidine blue Transillumination Sy pro⊛ ruby	Amido black India ink Ponceau-S red Colloidal gold CPTS
Ventajas	 Ex celente resistencia mecánica Fabricado sin soporte Sin detergente añadido 100% pura nitrocelulosa Buenas propiedades de absorción 	 Buena resistencia química No decoloración No inflamable Ex celente resistencia mecánica Captura eficiente de las proteínas 	Buena resistencia química Ex celente resistencia mecánica Buenas propiedades de absorción Elev ada sensibilidad
Propiedades	Hidrofóbico Electrostático	• Hidrofóbico	• Hidrofóbico
Met. inmobilización	● UV Crossling Baking (horno de vacío)	• Electroblotting	• UV Crossling Baking

Dispensador de filtros membrana

Filtración de muestras acuosas, estudios de partículas, análisis microbiológicos

Descripción

Dispensador automático de membranas de nitrato de celulosa en rollos estériles, individuales.

El aparato dispensa un filtro membrana cuando el analista presiona el botón o cuando el sensor óptico detecta la presencia de las pinzas al acercarse a tomar una membrana.

El diseño compacto lo hace muy manejable y fácil de limpiar.

Los filtros membrana Microsart® se presentan en rollos de un material plástico resistente que garantiza una total protección y esterilidad. Además, y para asegurar la trazabilidad de las membranas, se suministran con el número de lote, el diámetro y el número de serie impresos en el film transparente en cada blister individual.

Los filtros membrana Microsart® se pueden suministrar en poros 0.2, 0.45, 0.65, 0.8 y 1.2 μ m.

Además, Sartorius ha desarrollado las membranas High Flow de 0.45 µm. Su principal característica es una elevada velocidad de filtración gracias a la especial estructura de los poros.

Se fabrican en 47 y 50 mm de diámetro, cuadriculadas y en color blanco, verde v gris.

Esterilizadas mediante radiación γ.

ESPECIFICACIONES TECNICAS dispensador Microsart e.motion

Dimensiones: 204 x 213 x 165 mm

Peso: 2.9 kg

Voltaje: 110 V/230 V; opcional

Frecuencia: 50 – 60 Hz Máxima potencia: 10 W

Velocidad de dispensación: 0.5 s **Intervalo de dispensación:** 5 s

Normativas que cumple:

Marca CE y directiva EMC Standard Europea EN 50081-1 y -2 EN 50082 y EN 61010

ESPECIFICACIONES TECNICAS membranas Microsart

Diámetros: 47 ó 50 mm

Colores: blanco, verde y gris

Poros: 0.2 $\mu m,\,0.45~\mu m,\,0.45~\mu m$ high flow, 0.65

 μ m, 0.8 μ m, 1.2 μ m

Medida cuadrícula: 3.1 x 3.1 mm (130

cuadrículas)

Esterilización: γ-radiación

Resistencia térmica: 130°C

Compatibilidad química: Soluciones acuosas (pH 4-8), hidrocarburos y otros solventes orgánicos (ver tabla de compatibilidad química de

membranas)

Características técnicas

Poro	$0.2~\mu m$	$0.45~\mu m$	0.45 $_{\mu}$ m, high flow	$0.65~\mu m$	$0.8~\mu m$	1.2 μ m
Caudal de agua por cm [∠]						
a 1 bar según DIN 58355 (ml/min)	20	70	100	130	200	320
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Retención de coliformes (%)	100	100	100	no test.	no test.	no test.
Tipo de recuperación según ISO 7704						
como criterio de liberación de los lotes	≥ 90	≥ 90	≥ 90	≥ 90	-	-

Información para pedidos. Dispensador y membranas Microsart®

Dispensador de membranas y accesorio

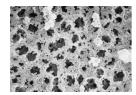
Código	Descripción
16712	Dispensador automático de membranas
1ZE-0028	Pedal dispensador

Membranas Nitrato Celulosa en rollo

Código	Material membrana	Diámetro	Poro	Color	Cuadricula	Formato	Presentación*
11407Z-47SCM	Nitrato de celulosa	47 mm.	0,2 _µ m	blanco	negra	esteril	300 unids./caja
11407Z-50SCM	Nitrato de celulosa	50 mm.	$0,2~\mu m$	blanco	negra	esteril	300 unids./caja
11406Z-47SCM	Nitrato de celulosa	47 mm.	0,45 _µ m	blanco	negra	esteril	300 unids./caja
114H6Z-47SCM	Nitrato de celulosa	47 mm.	0,45 $_{\mu}$ m high flow	blanco	negra	esteril	300 unids./caja
11406Z-50SCM	Nitrato de celulosa	50 mm.	0,45 _µ m	blanco	negra	esteril	300 unids./caja
139H6Z-47SCM	Nitrato de celulosa	47 mm.	0,45 $_{\mu}$ m high flow	blanco	v erde	esteril	300 unids./caja
13906Z-47SCM	Nitrato de celulosa	47 mm.	0,45 _µ m	blanco	v erde	esteril	300 unids./caja
13906Z-50SCM	Nitrato de celulosa	50 mm.	0,45 _µ m	blanco	v erde	esteril	300 unids./caja
13006Z-47SCM	Nitrato de celulosa	47 mm.	0,45 _µ m	gris	blanca	esteril	300 unids./caja
13006Z-50SCM	Nitrato de celulosa	50 mm.	0,45 _µ m	gris	blanca	esteril	300 unids./caja
130H6Z-50SCM	Nitrato de celulosa	50 mm.	0,45 $_{\mu}$ m high flow	gris	blanca	esteril	300 unids./caja
13806Z-47SCM	Nitrato de celulosa	47 mm.	0,45 _µ m	v erde	v erde oscuro	esteril	300 unids./caja
13806Z-50SCM	Nitrato de celulosa	50 mm.	$0,45~\mu m$	v erde	v erde oscuro	esteril	300 unids./caja
13005Z-47SCM	Nitrato de celulosa	47 mm.	0,65 _µ m	gris	blanca	esteril	300 unids./caja
13005Z-50SCM	Nitrato de celulosa	50 mm.	$0,65~\mu m$	gris	blanca	esteril	300 unids./caja
13004Z-47SCM	Nitrato de celulosa	47 mm.	0,8 µm	gris	blanca	esteril	300 unids./caja
13005Z-50SCM	Nitrato de celulosa	50 mm.	$0.8~\mu m$	gris	blanca	esteril	300 unids./caja
11403Z-47SCM	Nitrato de celulosa	47 mm.	1,2 _µ m	blanco	negra	esteril	300 unids./caja
11403Z-50SCM	Nitrato de celulosa	50 mm.	1,2 _µ m	blanco	negra	esteril	300 unids./caja

^{* 3} rollos de 100 unidades cada uno

Filtros membrana Poliamida (nylon)

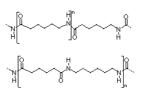

Filtración de muestras para HPLC, muestras acuosas, soluciones alcohólicas y solventes.

Descripción

Filtros membrana de naturaleza hidrofílica, flexibles y resistentes. Especialmente adecuadas en la captación de partículas en filtraciones generales y aplicaciones médicas con muestras acuosas y solventes orgánicos.

Esta membrana tiene una elevada adsorción no específica de proteínas y una buena resistencia a soluciones alcalinas.

Esta disponible en poro 0.22, 0.45 y 5.0 μ m; y en diámetros 13, 25, 47, 90, 142 y 293 mm de diámetro.



Ventajas

- Naturaleza hidrofilica.
- Bajo nivel de extraíbles.
- ☐ Elevada adsorción de proteínas.
- Excelente resistencia física y térmica.
- Buena compatibilidad con muestras.
 acuosas, alcalinas y solventes orgánicos.
- ☐ Esterilización en autoclave.

Aplicaciones

- ☐ Retención de bacterias y partículas.
- ☐ Filtración de muestras y solventes en HPLC.
- ☐ Kits de diagnóstico.
- Biosensores.
- □ Análisis de glucosa en la sangre.
- ☐ Filtración de drogas.
- Determinación de la presencia de Legionella en muestras de aguas según ISO 11731 parte I
- ☐ Recuperación de partículas de tamaño determinado.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

0.22 μ m ≥ 3.4 bar | 340 Kpa 0.45 μ m ≥ 2.0 bar | 200 Kpa 5.0 μ m ≥ 0.41 bar | 41 Kpa

Caudal con agua (ml/min /cm²)△p=0.7 bar | 70 Kpa aprox.:

 $\begin{array}{lll} 0.22 \; \mu m & 9.9 \; ml/min/cm^2 \\ 0.45 \; \mu m & 26.9 \; ml/min/cm^2 \\ 5.0 \; \mu m & 331 \; ml/min/cm^2 \end{array}$

Caudal con aire (ml/min /cm²)△p=0.7 bar | 70 Kpa aprox.:

 $\begin{array}{ccc} 0.22 \; \mu m & 1.7 \; m l/m i n/c m^2 \\ 0.45 \; \mu m & 3.2 \; m l/m i n/c m^2 \\ 5.0 \; \mu m & 36 \; m l/m i n/c m^2 \end{array}$

Espesor: 0.100 - 0.120 mm

Material membrana

Poliamida 66 (nylon)

Diámetros: 13, 25, 47, 90, 142 y 293 mm.

Temperatura máxima de uso ≤ 100°C

Máxima presión de trabajo: 8.7 psi

Extraíbles con agua < 0.2%

Compatibilidad química: 3-14 pH

Reacción al agua: hidrofílica

Adsorción: Elevada adsorción no específica de

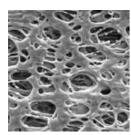
proteínas

Esterilización: Autoclave a 121°C ó 134°C, radiación γ, calor seco a 134°C, óxido de etileno

Información para pedidos: Filtros membrana poliamida (nylon)

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
шш	MNY022013N	Nylon	13 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
13 n	MNY045013N	Nylon	13 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
E	MNY022025N	Nylon	25 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
25 r	MNY045025N	Nylon	25 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
_	MNY022047N	Nylon	47 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
7 mm	MNY045047N	Nylon	47 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
47	MNY500047N	Nylon	47 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
шш	MNY022090N	Nylon	90 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
90	MNY045090N	Nylon	90 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
	MNY022142G	Nylon	142 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
142	MNY045142G	Nylon	142 mm	$0.45~\mu m$	blanco	lisa	no estéril	25 unids.
	MNY022293G	Nylon	293 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
293	MNY045293G	Nylon	293 mm	0.45 _µ m	blanco	lisa	no estéril	25 unids.

Filtros membrana Polietersulfona (PES)

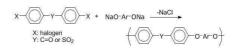

Filtración de muestras acuosas, biológicas y también algunos disolventes

Descripción

La polietersulfona es un material con excelentes cualidades: es hidrofílico, tiene un excelente caudal de flujo y gran capacidad de carga de partículas, elevada estabilidad térmica (es autoclavable), baja adsorción no específica y compatible con algunos disolventes agresivos.

Se utiliza basicamente en la filtración de muestras biológicas, acuosas o soluciones con disolventes (ver compatibilidad).

Se suministra en poros de 0.1, 0.22 y 0.45 µm; y en diámetro 25 y 47 mm de diámetro.



Ventajas

- Naturaleza hidrofílica. ■ Baio nivel de extraíbles.
- Elevada capacidad de carga. ■ Baja adsorción de proteínas.
- Excelente resistencia térmica.
- Buena compatibilidad con muestras acuosas y algunos disolventes agresivos.
- Autoclavable a 121°C.
- Disponible en tamaño de poro 0.1 μm.

Aplicaciones

- ☐ Filtración de muestras de aguas.
- ☐ Filtración de líquidos a elevada temperatura.
- ☐ Filtración de reactivos químicos.
- □ Ultralimpieza de soluciones (0.1 µm)
- ☐ Esterilización de muestras biológicas, sueros, fármacos, medios de cultivo, muestras proteínicas, etc.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

2.1 bar | 210 Kpa 0.22 µm 3.4 bar | 340 Kpa 2.7 bar | 270 Kpa 0.45µm

Caudal con agua (s/100 ml H₂O/9.62 cm² a 24 pulgadas Hg):

0.1 µm ≤ 130 0.22 µm ≤ 30 0.45 µm ≤ 21

Resistencia al reventamiento (≤ N psi):

0.1 µm 18 16 0.22 µm 16 0.45µm

Espesor: 0.120 - 0.150 mm

Gramaje habitual: 3.0 mg/cm²

Material membrana

Polietersulfona (PES)

Diámetros: 25 y 47 mm.

Poros: 0.1, 0.2 y 0.45 μm

Temperatura máxima de uso ≤ 90°C

Máxima presión de trabajo: 8.7 psi

Extraíbles con agua < 1% (< 0.015 mg/cm²

Esterilización: Mediante irradiación gamma, óxido de etileno, autoclave o vapor a 121ºC Compatibilidad química: 1-14 pH

Reacción al agua: hidrofílica

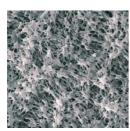
Adsorción de proteinas BSA: < 20 µg/cm²

Niveles de endotoxinas: < 0.25 Eu/ml utilizando 400 cm2/400 ml S.W.F.I. para el test con Limulus

Amoebocyte Lysate (LAL)

Información para pedidos: Filtros membrana polietersulfona (PES)

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
Ø	MPES010025N	Polietersulfona (PES)	25 mm	0.1 _µ m	blanco	lisa	no estéril	100 unids.
E E	MPES022025N	Polietersulfona (PES)	25 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
25	MPES045025N	Polietersulfona (PES)	25 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
Ø	MPES010047N	Polietersulfona (PES)	47 mm	0.1 _µ m	blanco	lisa	no estéril	100 unids.
E E	MPES022047N	Polietersulfona (PES)	47 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
47	MPES045047N	Polietersulfona (PES)	47 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.


Filtros membrana PTFE

Filtración de muestras de disolventes agresivos, gases, separación de fases, aerosoles y trabajos de venteo

Descripción

Las principales características de las membranas de politetrafluoruroetileno (PTFE) son su carácter hidrofóbico y la extraordinaria resistencia química frente a todos los disolventes agresivos, ácidos, álcalis, excepto el ácido fosfórico. Se recomienda su uso en la filtración de disolventes agresivos puros, filtración de gases, aerosoles, trabajos de venteo, etc. En el caso que sea necesario filtrar muestras acuosas, entonces es necesario humedecer la membrana con algún solvente orgánico como etanol o isopropanol.

Se suministra en poros de 0.22 , 0.45 , 1.2 y 5.0 $\mu m;$ y en diámetro 13, 25, 47, 90, 142 y 293 mm de diámetro.

Ventajas

- Nulo nivel de extraíbles con agua.
- ☐ Extraordinaria compatibilidad química.
- ☐ Elevada resistencia térmica.
- ☐ Elevado caudal con bajo nivel de presión.
- Autoclavable a 134°C.

Aplicaciones

- ☐ Filtración de muestras de disolventes agresivos y ácidos fuertes.
- Aplicaciones de venteo estéril en frascos de cultivo, fermentadores, tanques y contenedores.
- Prefiltración del aire en cabinas de control atmosférico.
- ☐ Separación de fases.
- ☐ Filtración de aerosoles.

ESPECIFICACIONES TECNICAS

Punto de burbuja con alcohol (valor mínimo)

0.22 µm	1.0 bar 100 Kpa
0.45 µm	0.5 bar 50 Kpa
1.2 µm	0.3 bar 30 Kpa
5.0 µm	- bar - Kpa

Caudal con alcohol a 25°C ($\Delta p=0.7$ bar) ml/min/cm²

0.22 µm	8
0.45 µm	12
1.2 µm	50
5.0 µm	250

Permeabilidad al aire (L/min/cm²) ∆p= 0.1 bar

0.22 µm	0.40
0.45 µm	0.61
1.2 µm	7.04
5.0 µm	8.54

Espesor: 0.190 - 0.250 mm

Material membrana

Politetrafluoruroetileno (PTFE)

Diámetros: 13, 25, 47, 90, 142 y 293 mm.

Poros: 0.22, 0.45, 1.2 y 5.0 μm

Temperatura máxima de uso ≤ 130°C

Presión máxima de trabajo: 8.7 psi

Extraíbles con agua: No

Esterilización: Mediante irradiación gamma,

óxido de etileno, autoclave a 134ºC

Compatibilidad química: 1- 14 pH

Reacción al agua: hidrofóbica

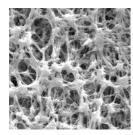
Información para pedidos: Filtros membrana PTFE

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
	MPT022013N	PTFE	13 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
J W	MPT045013N	PTFE	13 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
13 mm Ø	MPT120013N	PTFE	13 mm	1.2 _µ m	blanco	lisa	no estéril	100 unids.
-	MPT500013N	PTFE	13 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
	MPT022025N	PTFE	25 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
mmø	MPT045025N	PTFE	25 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
25 mr	MPT120025N	PTFE	25 mm	1.2 _µ m	blanco	lisa	no estéril	100 unids.
2	MPT500025N	PTFE	25 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
	MPT022047N	PTFE	47 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
mmø	MPT045047N	PTFE	47 mm	0.45 _µ m	blanco	lisa	no estéril	100 unids.
m /	MPT120047N	PTFE	47 mm	1.2 _µ m	blanco	lisa	no estéril	100 unids.
47	MPT500047N	PTFE	47 mm	5.0 _µ m	blanco	lisa	no estéril	100 unids.
шш	MPT022090G	PTFE	90 mm	0,22 _µ m	blanco	lisa	no estéril	25 unids.
90	MPT045090G	PTFE	90 mm	$0.45~\mu m$	blanco	lisa	no estéril	25 unids.
_	MPT022142G	PTFE	142 mm	0.22 _µ m	blanco	lisa	no estéril	25 unids.
42 mmø	MPT045142G	PTFE	142 mm	$0.45~\mu m$	blanco	lisa	no estéril	25 unids.
42 n	MPT120142G	PTFE	142 mm	1.2 _µ m	blanco	lisa	no estéril	25 unids.
~	MPT500142G	PTFE	142 mm	5.0 _µ m	blanco	lisa	no estéril	25 unids.
	MPT022293G	PTFE	293 mm	0.22 _µ m	blanco	lisa	no estéril	25 unids.
mmØ	MPT045293G	PTFE	293 mm	0.45 _µ m	blanco	lisa	no estéril	25 unids.
293 n	MPT120293G	PTFE	293 mm	1.2 _µ m	blanco	lisa	no estéril	25 unids.
2	MPT500293G	PTFE	293 mm	5.0 _µ m	blanco	lisa	no estéril	25 unids.

Filtros membrana Polipropileno (PP)

Filtración de muestras acuosas, disolventes agresivos, cromatografia iónica y gases.

Descripción


Estas membranas están fabricadas con polipropileno puro, por ello tienen una excelente compatibilidad química frente a la mayoría de disolventes orgánicos. El polipropileno es un material con un nivel de extraíbles extremadamente bajo y por ello es muy recomendado en la filtración de muestras en cromatografía iónica, para prolongar la vida de la columna.

Esta es la membrana preferida en la filtración de muestras de HPLC donde los niveles detección están por debajo de 230 nm.

Otra característica importante es su baja adsorción no específica por lo cual es ideal en la filtración de muestras críticas con poca presencia de proteínas. Debido a su naturaleza hidrofóbica, se utilizan en procesos industriales como la filtración de gases.

También es una membrana interesante por que al ser un hidrocarburo puro, no tiene problemas de eliminación de compuestos halogenados como puede pasar con materiales como el PTFE o el PVDF.

Se suministra en poros de 0.22 y 0.45 μm ; y en diámetro 25, y 47 mm de diámetro.

Ventajas

- Naturaleza hidrofóbica.
- Bajísimo nivel de extraíbles.
- ☐ Elevada compatibilidad química.
- Elevado caudal con bajo nivel de presión.Baja adsorción no específica de
- proteínas.
- Ausencia de problemas por eliminación de compuestos halogenados.

Aplicaciones

- Filtración de muestras de bastantes disolventes agresivos.
- ☐ Filtración de gases en procesos industriales
- □ Cromatografía iónica.
- ☐ Filtración de muestras en HPLC.

ESPECIFICACIONES TECNICAS

Punto de burbuja con alcohol (valor mínimo)

0.22 μm 0.8 bar | 80 Kpa 0.45μm 0.11 bar | 11 Kpa

Caudal con alcohol a 25°C ($\Delta p=0.7$ bar) ml/min/cm²

 $0.22 \, \mu m \leq 60$ $0.45 \, \mu m \leq 140$

Permeabilidad al aire (L/min/cm²) ∆p= 0.01 Mpa

0.22 μm 5.23 0.45 μm 6.83

Espesor: 0.170 - 0.200 mm

Material membrana

Polipropileno (PP)

Diámetros: 25 y 47 mm.

Poros: 0.22 y 0.45 µm

Temperatura máxima de uso ≤ 50°C

Máxima presión de trabajo: 8.7 psi

Extraíbles con agua: No

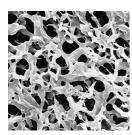
Compatibilidad química: 1 – 14 pH

Reacción al agua: hidrofóbica

Información para pedidos: Filtros membrana Polipropileno (PP)

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
E E	MPP022025N	Polipropileno (PP)	25 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
25 r	MPP045025N	Polipropileno (PP)	25 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
E E	MPP022047N	Polipropileno (PP)	47 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
47 r	MPP045047N	Polipropileno (PP)	47 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.

Filtros membrana PVDF


Filtración de disolventes, gases y muestras acuosas

Descripción

El Polifluoruro de Vinilideno (PVDF) es un material que demuestra una alta eficiencia de retención de partículas, excelente compatibilidad química , buena resistencia mecánica, resistencia térmica elevada y baja adsorción no específica de proteinas.

Es de naturaleza hidrofóbica por lo que puede ser utilizada con muestras acuosas humedeciendo la superficie con isopropanol o otro alcohol. Todas estas características hacen sea una membrana muy polivalente y

Se suministra en poros de 0.22 y 0.45 $\mu\text{m};$ y en diámetro 25 y 47 mm de diámetro.

Ventajas

Naturaleza hidrofóbica
Amplia compatibilidad química.
Excelentes propiedades mecánicas
Buena resistencia a elevadas
temperaturas.
Fisiológicamente inocuos.

Aplicaciones

Diversos procesos industriales.

☐ Bajo nivel de extraíbles.

ESPECIFICACIONES TECNICAS

Punto de burbuja con alcohol (valor mínimo)

Caudal con alcohol (s/100 ml $\rm H_2O/9.62~cm^2~a$ 24 pulgadas $\rm Hg)$:

0.22 μm 10 - 15 0.45 μm 37 - 60

Permeabilidad al aire (L/min/cm²) Δp = 0.01 Mpa

0.22 μm 2.06 0.45 μm 4.02

Espesor: 0.120 - 0.200 mm

Material membrana

Polifluoruro de Vinilideno (PVDF)

Diámetros: 25 y 47 mm.

Poros: 0.22 y 0.45 µm

Temperatura máxima de uso ≤ 170°C

Máxima presión de trabajo: 8.7 psi

Extraíbles con agua: Muy bajo Compatibilidad química: 1–14 pH

Reacción al agua: hidrofóbica

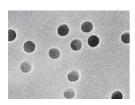
Esterilización: Mediante autoclave a 121°C,

radiación γ

Información para pedidos: Filtros membrana PVDF

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
E	MPV022025N MPV045025N	PVDF	25 mm	0.22 _µ m	blanco	lisa	no estéril	100 unids.
25 r	MPV045025N	PVDF	25 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.
E	MPV022047N MPV045047N	PVDF	47 mm	0,22 _µ m	blanco	lisa	no estéril	100 unids.
47 r	MPV045047N	PVDF	47 mm	$0.45~\mu m$	blanco	lisa	no estéril	100 unids.

Filtros membrana Policarbonato

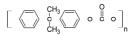

Análisis de partículas mediante microscopio, análisis de aguas y aire

Descripción

El Policarbonato es un material con una estructura casi perfecta. El proceso de fabricación se inicia con la producción del film de policarbonato, seguidamente se bombardea la superficie de la membrana con haces de electrones, con lo cual los poros son exactamente circulares.

Es una membrana de naturaleza hidrofílica por lo cual se aconseja su uso con muestras acuosas y biológicas.

Se suministra en diversos poros entre 0.1 $\mu m\,$ y 20.0 $\mu m;$ y en 13, 25 y 47 mm de diámetro.


Ventajas

	Naturaleza	hidrofílica.
--	------------	--------------

- ☐ Translúcida al paso de la luz por lo que se recomienda en análisis mediante microscopio o lente binocular.
- Estructura de poros casi perfecta.
- Bajo nivel de extraíbles.
- Muy poco higroscópica.
- Bajo contenido de metales.
- Excelente resistencia mecánica.
- ☐ Autoclavable a 121°C.

Aplicaciones

- Análisis de partículas.
- Análisis ambiental
- Epifluorescencia.
- Cultivos biológicos.
- ☐ Test de fuel.
- ☐ Bioensayos.
- Parasitología.
- Análisis de aire.
- Análisis de aguas.
- Análisis de legionella con la membrana de 0.4 µm en formato estéril segun ISO 11731 parte I

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

0.1 µm	94 psi
0.22 µm	57 psi
0.4 µm	32 psi
0.8 µm	17 psi
2.0 µm	8 psi
3.0 µm	6 psi
5.0 µm	3.5 ps
8.0 µm	2.0 ps
12.0 µm	1.0 ps
14.0 µm	1.0 ps
20.0 µm	1.0 ps

Caudal con agua (ml/min/cm²) ∆p= 10 psi

0.1 µm	2.5
0.22 µm	10
0.4 µm	33
0.8 µm	60
2.0 µm	300
3.0 µm	440
5.0 µm	700
8.0 µm	1000
12.0 µm	1250
14.0 µm	1400
20.0 um	-

Caudal con aire (ml/min/cm²) ∆p= 10 psi

0.1 µm	1.5
0.22 µm	3
0.4 µm	7.5
0.8 µm	18
2.0 µm	16.5
3.0 µm	75
5.0 µm	60
8.0 µm	60
12.0 µm	127
14.0 µm	127
20.0 µm	-

Espesor: 0.060 - 0.100 mm

Porosidad: < 15%

Material membrana: Policarbonato

Diámetros: 13, 25 y 47 mm.

Temperatura máxima de uso ≤ 140°C

Presión máxima de trabajo: 8.7 psi

Extraíbles con agua: Muy bajo Compatibilidad química: 4–8 pH

Reacción al agua: hidrofílica

Esterilización: Mediante autoclave a 121ºC

Información para pedidos: Filtros membrana policarbonato

	Código	Material membrana	Diámetro	Poro	Color	Superficie	Formato	Cantidad
	MPC0010013N	Policarbonato	13 mm	0.1 _µ m	translúcido	lisa	no estéril	100 unids.
	MPC0020013N	Policarbonato	13 mm	$0.2~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC0040013N	Policarbonato	13 mm	0.4 _µ m	translúcido	lisa	no estéril	100 unids.
	MPC0080013N	Policarbonato	13 mm	$0.8~\mu m$	translúcido	lisa	no estéril	100 unids.
Z Ø	MPC0200013N	Policarbonato	13 mm	$2.0~\mu m$	translúcido	lisa	no estéril	100 unids.
13 mmø	MPC0300013N	Policarbonato	13 mm	$3.0~\mu m$	translúcido	lisa	no estéril	100 unids.
-	MPC0500013N	Policarbonato	13 mm	$5.0~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC0800013N	Policarbonato	13 mm	$8.0~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC1200013N	Policarbonato	13 mm	12.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC1400013N	Policarbonato	13 mm	14.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC2000013N	Policarbonato	13 mm	$20.0~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC 0010025N	Policarbonato	25 mm	0.1 µm	translúcido	lisa	no estéril	100 unids.
	MPC0020025N	Policarbonato	25 mm	$0.2~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC 0040025N	Policarbonato	25 mm	$0.4~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC0080025N	Policarbonato	25 mm	$0.8~\mu m$	translúcido	lisa	no estéril	100 unids.
mmØ	MPC 0200025N	Policarbonato	25 mm	$2.0~\mu m$	translúcido	lisa	no estéril	100 unids.
25 mr	MPC 0300025N	Policarbonato	25 mm	$3.0~\mu m$	translúcido	lisa	no estéril	100 unids.
6	MPC 0500025N	Policarbonato	25 mm	5.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC 0800025N	Policarbonato	25 mm	$8.0~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC 1200025N	Policarbonato	25 mm	12.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC 1400025N	Policarbonato	25 mm	14.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC2000025N	Policarbonato	25 mm	$20.0~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC0010047N	Policarbonato	47 mm	0.1 µm	translúcido	lisa	no estéril	100 unids.
	MPC0020047N	Policarbonato	47 mm	$0.2~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC0040047N	Policarbonato	47 mm	$0.4~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC0040047SN	Policarbonato	47 mm	$0.4~\mu m$	translúcido	lisa	estéril	200 unids.
	MPC0080047N	Policarbonato	47 mm	$0.8~\mu m$	translúcido	lisa	no estéril	100 unids.
mmØ	MPC 0200047N	Policarbonato	47 mm	$2.0~\mu m$	translúcido	lisa	no estéril	100 unids.
47 mr	MPC 0300047N	Policarbonato	47 mm	$3.0~\mu m$	translúcido	lisa	no estéril	100 unids.
4	MPC 0500047N	Policarbonato	47 mm	5.0 _µ m	translúcido	lisa	no estéril	100 unids.
	MPC 0800047N	Policarbonato	47 mm	$8.0~\mu m$	translúcido	lisa	no estéril	100 unids.
	MPC 1200047N	Policarbonato	47 mm	12.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC 1400047N	Policarbonato	47 mm	14.0 μ m	translúcido	lisa	no estéril	100 unids.
	MPC2000047N	Policarbonato	47 mm	20.0 _µ m	translúcido	lisa	no estéril	100 unids.

GUIA FILTROS JERINGA FILTER-LAB

MATERIAL MEMBRANA	PORO (µm)	DIAMETRO	FORMATO	CONEXIONES	TEMPERATURA MAX
Acetato de celulosa	0.22 0.45 0.8 1.2 5.0	13 25 30	esteril no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤ 50° C
Fibra de vidrio + Acetato cel.	Prefiltro + 0.22 μm Prefiltro + 0.45 μm	25	no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤ 50° C
Microfibra de vidrio	Retención 0.7 μm (Filtración de profundidad)	25	no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤ 180° C
Polietersulfona (PES) X———————————————————————————————————	0.1 0.22 0.45	13 25	esteril no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤90° C
Poliamida (nylon)	0.22 0.45	13 25 30	no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤ 100° C
Politetrafluoruroetileno (PTFE F F I I R - C - C - R I I F F) 0.22 0.45	4 13 25 30	no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤ 130° C
Polifluoruro de polivinilideno (PVDF)	0.22 0.45	13 25 30	no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤100° C
Polipropileno (PP) (CH ₂ —CH) n CH ₃	0.22 0.45	13 25	no esteril	Entrada: Luer lock hembra Salida: Luer slip macho	≤ 50° C

COMPATIBILIDAD QUIMICA pH	ADSORCION PROTEINAS	EXTRAIBLES CON AGUA	REACCION AL AGUA	PAGINA
4 - 8	Muy baja	< 0.2%	hidrofilica	108
4 - 8	Muy baja	< 0.2%	hidrofilica	112
3 - 11	Muy baja	< 0.2%	hidrofilica	110
1 - 14	Muy baja	< 0.2%	hidrofilica	114
3 - 12	Elevada	< 0.2%	hidrofilica	116
1 - 14	Nula	< 0.2%	hidrofóbica	118
1 - 14	Baja	< 0.2%	hidrofilica hidrofóbica	120
1 - 14	Baja	< 0.2%	hidrofilica	122

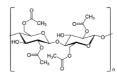
Filtros jeringa Acetato Celulosa

Clarificación, purificación y esterilización de muestras acuosas y biológicas

Descripción

Estos filtros jeringa con membrana de acetato de celulosa cuyas principales características son: su baja adsorción no específica de proteínas, y su elevado caudal , lo cual los hace recomendables en la filtración de muestras biológicas y acuosas.

Están disponibles en formato estéril (blíster individual) y no estéril, en poros de 0.22 a 5.0 µm y en medidas 13, 25 y 30 mm de diámetro.


Ventajas

- Naturaleza hidrofílica.
- □ Baja adsorción no específica de proteínas.
- Elevado caudal.
- Estructura de los poros muy regular.
- Amplia gama de poros.
- ☐ Libres de nitratos.
- ☐ Formato estéril y no estéril.

Aplicaciones

- ☐ Esterilización de muestras acuosas (0.22
- Filtración de muestras de serum (0.22
- Preparación de muestra biológicas (0.45 um)
- ☐ Preparación de muestras proteínicas
- Determinación del índice de colmatación con muestras de vinos (5.0, 1.2 µm)
- Filtración de muestras de alimentos (1.2 y
- □ Pre-filtraciones de muestras acuosas (5.0 v 1.2 um)
- ☐ Filtración de fármacos (0.45 y 0.22 μm)
- ☐ Preparación de muestras acuosas para HPLC.
- ☐ Filtración de medios de cultivo.
- ☐ Filtración de aguas subterráneas.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

0.2 µm	2.8 bar 280 Kpa
0.45 µm	1.6 bar 160 Kpa
0.8 µm	0.8 bar 80 Kpa
1.2 µm	0.6 bar 60 Kpa
5.0 µm	0.4 bar 40 Kpa

Caudal con agua (ml/min /cm 2) \triangle p=0.7 bar | 70 Kpa aprox.:

0.2 µm	10 ml/min/cm ²
0.45 µm	30 ml/min/cm ²
0.8 µm	45 ml/min/cm ²
1.2 µm	100 ml/min/cm ²
5.0 µm	200 ml/min/cm ²

Espesor: 0.100 - 0.150 mm

Materiales

Membrana: Acetato celulosa Carcasa: Polipropileno (PP)

Diámetros: 13, 25, 30 mm.

Área de filtración

13 mm diámetro: 0.92 cm² 25 mm diámetro: 2.98 cm² 30 mm diámetro: 4,90 cm²

Temperatura máxima de uso ≤ 50°C

Máxima presión de trabajo: 8.7 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

13 mm diámetro: < 10 μl 25 mm diámetro: < 30 μl 30 mm diámetro: < 55 μl

Extraíbles con agua < 0.2%

Compatibilidad química: 4 – 8 pH

Reacción al agua: hidrofílica

Adsorción: Baja adsorción no específica de

proteínas

Información para pedidos: Filtros jeringa acetato de celulosa

	Código	Membrana	Carcasa	Diámetro	Poro	Entrada/salida	Formato	Cantidad
	JCA022013N	Acetato celulosa	Polipropileno	13 mm.	0.22 _µ m	luer lock/luer slip	no estéril	100 unids.
E	JCA022013R	Acetato celulosa	Polipropileno	13 mm.	0.22 _µ m	luer lock/luer slip	no estéril	1.000 unids.
	JCAS022013K	Acetato celulosa	Polipropileno	13 mm.	0.22 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA022025N	Acetato celulosa	Polipropileno	25 mm.	0.22 _µ m	luer lock/luer slip	no estéril	100 unids.
0.22µm	JCA022025R	Acetato celulosa	Polipropileno	25 mm.	0.22 _µ m	luer lock/luer slip	no estéril	1.000 unids.
0	JCAS022025K	Acetato celulosa	Polipropileno	25 mm.	0.22 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA022030N	Acetato celulosa	Polipropileno	30 mm.	0.22 _µ m	luer lock/luer slip	no estéril	100 unids.
	JCA022030R	Acetato celulosa	Polipropileno	30 mm.	0.22 _µ m	luer lock/luer slip	no estéril	1.000 unids.
	JCAS022030K	Acetato celulosa	Polipropileno	30 mm.	0.22 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA045013N	Acetato celulosa	Polipropileno	13 mm.	0.45 μm	luer lock/luer slip	no estéril	100 unids.
	JCA045013R	Acetato celulosa	Polipropileno	13 mm.	0.45 _µ m	luer lock/luer slip	no estéril	1.000 unids.
	JCAS045013K	Acetato celulosa	Polipropileno	13 mm.	0.45 μm	luer lock/luer slip	estéril, ind.	50 unids.
Ε	JCA045025N	Acetato celulosa	Polipropileno	25 mm.	0.45 _µ m	luer lock/luer slip	no estéril	100 unids.
.45 µm	JCA045025R	Acetato celulosa	Polipropileno	25 mm.	0.45 μm	luer lock/luer slip	no estéril	1.000 unids.
0.	JCAS045025K	Acetato celulosa	Polipropileno	25 mm.	0.45 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA045030N	Acetato celulosa	Polipropileno	30 mm.	0.45 _μ m	luer lock/luer slip	no estéril	100 unids.
	JCA045030R	Acetato celulosa	Polipropileno	30 mm.	0.45 _μ m	luer lock/luer slip	no estéril	1.000 unids.
	JCAS045030K	Acetato celulosa	Polipropileno	30 mm.	0.45 _μ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA080013N	Acetato celulosa	Polipropileno	13 mm.	0.8 _µ m	luer lock/luer slip	no estéril	100 unids.
	JCA080013R	Acetato celulosa	Polipropileno	13 mm.	0.8 _µ m	luer lock/luer slip	no estéril	1.000 unids.
0.8 µm	JCAS080013K	Acetato celulosa	Polipropileno	13 mm.	0.8 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
0.8	JCA080025N	Acetato celulosa	Polipropileno	25 mm.	0.8 _µ m	luer lock/luer slip	no estéril	100 unids.
	JCA080025R	Acetato celulosa	Polipropileno	25 mm.	0.8 _µ m	luer lock/luer slip	no estéril	1.000 unids.
	JCAS080025K	Acetato celulosa	Polipropileno	25 mm.	0.8 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA120013N	Acetato celulosa	Polipropileno	13 mm.	1.2 _µ m	luer lock/luer slip	no estéril	100 unids.
	JCA120013R	Acetato celulosa	Polipropileno	13 mm.	1.2 _µ m	luer lock/luer slip	no estéril	1.000 unids.
ᆵ	JCAS120013K	Acetato celulosa	Polipropileno	13 mm.	$1.2~\mu m$	luer lock/luer slip	estéril, ind.	50 unids.
1.2	JCA120025N	Acetato celulosa	Polipropileno	25 mm.	1.2 _µ m	luer lock/luer slip	no estéril	100 unids.
	JCA120025R	Acetato celulosa	Polipropileno	25 mm.	$1.2~\mu m$	luer lock/luer slip	no estéril	1.000 unids.
	JCAS120025K	Acetato celulosa	Polipropileno	25 mm.	1.2 _µ m	luer lock/luer slip	estéril, ind.	50 unids.
	JCA500013N	Acetato celulosa	Polipropileno	13 mm.	5.0 µm	luer lock/luer slip	no estéril	100 unids.
	JCA500013R	Acetato celulosa	Polipropileno	13 mm.	5.0 _µ m	luer lock/luer slip	no estéril	1.000 unids.
E	JCAS500013K	Acetato celulosa	Polipropileno	13 mm.	5.0 μm	luer lock/luer slip	estéril, ind.	50 unids.
5.0 µm	JCA500025N	Acetato celulosa	Polipropileno	25 mm.	5.0 _μ m	luer lock/luer slip	no estéril	100 unids.
	JCA500025R	Acetato celulosa	Polipropileno	25 mm.	5.0 _µ m	luer lock/luer slip	no estéril	1.000 unids.
	JCAS500025K	Acetato celulosa	Polipropileno	25 mm.	5.0 _µ m	luer lock/luer slip	estéril, ind.	50 unids.

Filtros jeringa con prefiltro de fibra de vidrio

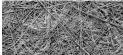
Clarificación y esterilización de muestras con elevada carga de partículas

Descripción

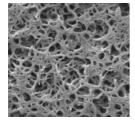
Estos filtros jeringa contienen un filtro membrana de acetato de celulosa o de poliamida (nylon) de 0.22 ó 0.45 µm, junto a un prefiltro de microfibra de vidrio con una retención de partículas de 0.7 µm. Este prefiltro de profundidad impide la colmatación prematura de la membrana final.

Están especialmente indicados para la filtración y esterilización de muestras especialmente difíciles, con elevada carga de partículas sólidas, deformables o de elevado poder colmatante.

Se suministran en 25 mm de diámetro y en formato no esteril.


Ventajas

- ☐ Compatibilidad al agua: hidrofílica.
- ☐ Evitan la colmatación prematura de la membrana final.



Aplicaciones

- ☐ Esterilización de muestras acuosas con cargas coloidales (0.22 µm).
- ☐ Clarificación de muestras acuosas sucias $(0.45 \mu m)$.
- ☐ Filtración de muestras difíciles en HPLC.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

Acetato de celulosa

Prefiltro + 0.22 μm 3.5 bar | 350 Kpa Prefiltro + 0.45 µm 1.6 bar | 160 Kpa

Poliamida (nylon)

Prefiltro + 0.22 µm 2.8 bar | 280 Kpa Prefiltro + 0.45 µm 1.8 bar | 180 Kpa

Caudal con agua (ml/min /cm²)△p=0.7 bar | 70 Kpa aprox.:

Acetato de celulosa

Prefiltro + 0.22 µm 10 ml/min/cm² Prefiltro + 0.45 µm 20 ml/min/cm²

Poliamida (nylon)

Prefiltro + 0.22 µm 2.5 ml/min/cm² Prefiltro + 0.45 µm 8.0 ml/min/cm²

Materiales

Prefiltro: Microfibra de vidrio con ligantes Membrana: Acetato celulosa o poliamida (nylon)

Carcasa: Polipropileno (PP)

Diámetro: 25 mm. Área de filtración

2,98 cm²

Temperatura máxima de uso

Acetato de celulosa ≤ 50°C Poliamida (nylon) ≤ 100°C

Máxima presión de trabajo: 8.7 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

25 mm diámetro: < 30 µl

Extraíbles con agua < 0.2%

Compatibilidad química:

Acetato de celulosa: 4 – 8 pH Poliamida (nylon): 3 – 12 pH

Reacción al agua: hidrofílica

Información para pedidos: Filtros jeringa acetato de celulosa o nylon + fibra de vidrio

Código	Membrana	Carcasa	Diámetro	Poro	Entrada/Salida	Formato	Cantidad
JGFCA022025N	Fibra vidrio + acetato cel.	Polipropileno	25 mm.	$0,22\mu m$	luer lock/luer slip	no esteril	100 unids.
JGFCA022025R	Fibra vidrio + acetato cel.	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
JGFNY022025N	Fibra vidrio + nylon	Polipropileno	25 mm.	$0,22\mu m$	luer lock/luer slip	no esteril	100 unids.
JGFNY022025R	Fibra vidrio + nylon	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
JGFCA045025N	Fibra vidrio + acetato cel.	Polipropileno	25 mm.	0,45 _µ m	luer lock/luer slip	no esteril	100 unids.
JGFCA045025R	Fibra vidrio + acetato cel.	Polipropileno	25 mm.	0,45 $_{\mu}$ m	luer lock/luer slip	no esteril	1000 unids.
JGFNY045025N	Fibra vidrio + nylon	Polipropileno	25 mm.	0,45 _µ m	luer lock/luer slip	no esteril	100 unids.
JGFNY045025R	Fibra vidrio + nylon	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	1000 unids.

Filtros jeringa de microfibra de vidrio

Rápida prefiltración de muestras con elevada carga de partículas

Descripción

La carcasa incorpora un filtro de microfibra de vidrio con ligantes.
Estos filtros son muy útiles en la prefiltración de muestras turbias o con elevadas cargas que pueden provocar la colmatación prematura de una membrana. También se pueden utilizar como prefiltro en combinación con filtros jeringa conectándolas entre si.

Se suministran en 25 mm de diámetro y en formato no estéril.

Ventajas

- □ Reacción al agua hidrofílica
- Excelente compatibilidad con solventes orgánicos y ácidos fuertes (excepto ácido fluorhídrico) y bases.
- Elevada capacidad de carga.

Aplicaciones

- Prefiltración de muestras difíciles antes de la filtración con filtros jeringa con membrana de 0.22 ó 0.45 μm.
- ☐ Prefiltración de muestras turbias o con elevada carga de partículas.
- En tareas de venteo en máquinas para la determinación del contenido de nicotina del tabaco.
- ☐ Filtración de medios de cultivo antes de ser esterilizados.
- Prefiltración de muestras de serum y cultivos celulares antes de su análisis.

ESPECIFICACIONES TECNICAS

Caudal con agua (ml/min /cm 2) \triangle p=0.7 bar | 70 Kpa aprox.:

 $\leq 100 \text{ ml/min/cm}^2$

Materiales

Membrana: Microfibra de vidrio con ligantes

Carcasa: Polipropileno (PP)

Retención

0.7 µm

Diámetro: 25 mm.

Área de filtración

2,98 cm²

Temperatura máxima de uso ≤ 180°C

Máxima presión de trabajo: 87 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

25 mm diámetro: < 30 µl

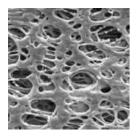
Extraíbles con agua < 0.2%

Compatibilidad química: 3 – 11 pH

Reacción al agua: hidrofílica

Información para pedidos: Filtros jeringa microfibra de vidrio

Código	Membrana	Carcasa	Diámetro	Entrada/Salida	Formato	Cantidad
JGF070025N	Microfibra de vidrio	Polipropileno	25 mm.	luer lock/luer slip	no esteril	100 unids.
JGF070025R	Microfibra de vidrio	Polipropileno	25 mm.	luer lock/luer slip	no esteril	1000 unids.



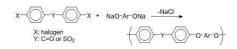
Filtros jeringa Polietersulfona (PES)

Purificación, esterilización y ultrafiltración de muestras biológicas y acuosas

Descripción

La polietersulfona (PES) es un material muy interesante en la ultralimpieza y esterilización de muestras acuosas y biológicas, debido a su elevado caudal de paso con baja presión de entrada y a su baja adsorción no específica de proteínas. Asimismo su compatibilidad química es muy buena. Están disponibles en formato estéril y no estéril y en 13 y 25 mm de diámetro. Membranas de 0.1, 0.22 y 0.45 µm.

Ventajas


- ☐ Elevada velocidad de filtración
- Bajo nivel de extractables
- Baja adsorción no específica de proteínas
- Certificación Rnase-free, Dnase-free, DNA-free y libre de pirogénicos.

Aplicaciones

- □Ultrafiltración de muestras acuosas (0.1
- □Esterilización de muestras acuosas, muestras biológicas y soluciones farmaceúticas (0.22 µm)
- □Análisis ambiental (0.45 µm)
- ☐ Filtración estéril de medios de cultivo y aditivos para medios de cultivo.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

0.1 μm 2.0 bar | 200 Kpa (alcohol) 0.22 μm 3.5 bar | 350 Kpa 0.45 μm 2.2 bar | 220 Kpa

Caudal con agua (ml/min /cm²)△p=0.7 bar | 70 Kpa aprox.:

 0.1 μm
 5 ml/min/cm²

 0.22 μm
 10 ml/min/cm²

 0.45 μm
 25 ml/min/cm²

Espesor: 0.110 – 0.130 mm

Materiales

Membrana: Polietersulfona (PES) Carcasa: Polipropileno (PP)

Diámetros: 13, 25 mm.

Área de filtración

13 mm diámetro: 0.92 cm² 25 mm diámetro: 2.98 cm²

Temperatura máxima de uso ≤ 90°C

Máxima presión de trabajo: 87 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

13 mm diámetro: < 10 μ l 25 mm diámetro: < 30 μ l

Extraíbles con agua < 0.2%

Compatibilidad química: 1 – 14 pH

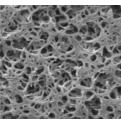
Reacción al agua: hidrofílica

Adsorción: Baja adsorción no específica de

proteínas

Información para pedidos: Filtros jeringa polietersulfona (PES)

	Código	Membrana	Carcasa	Diámetro	Poro	Entrada/Salida	Formato	Cantidad
0.1	JPESS010025K	Polietersulfona	Polipropileno	25 mm.	$0,1~\mu m$	luer lock/luer slip	estéril, ind.	50 unids.
	JPESS022013K	Polietersulfona	Polipropileno	13 mm.	$0,22~\mu m$	luer lock/luer slip	esteril, ind	50 unids.
	JPES022013N	Polietersulfona	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no estéril	100 unids.
를	JPES022013R	Polietersulfona	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no estéril	1000 unids.
0.22	JPESS022025K	Polietersulfona	Polipropileno	25 mm.	0,22 _µ m	luer lock/luer slip	esteril, ind	50 unids.
	JPES022025N	Polietersulfona	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no estéril	100 unids.
	JPES022025R	Polietersulfona	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no estéril	1000 unids.
	JPESS045013K	Polietersulfona	Polipropileno	13 mm.	0,45 _µ m	luer lock/luer slip	esteril, ind	50 unids.
	JPES045013N	Polietersulfona	Polipropileno	13 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	100 unids.
0.45µm	JPES045013R	Polietersulfona	Polipropileno	13 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	1000 unids.
0.4	JPESS045025K	Polietersulfona	Polipropileno	25 mm.	0,45 _µ m	luer lock/luer slip	esteril, ind	50 unids.
	JPES045025N	Polietersulfona	Polipropileno	25 mm.	0,45 μ m	luer lock/luer slip	no estéril	100 unids.
	JPES045025R	Polietersulfona	Polipropileno	25 mm.	0,45 μ m	luer lock/luer slip	no estéril	1000 unids.

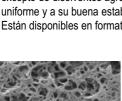

Filtros jeringa Poliamida (Nylon)

Ampliamente utilizados en la filtración de muestras para HPLC y en aplicaciones analíticas diversas

Descripción

Filtros jeringa de naturaleza hidrofílica. Se han convertido en un standard mundial para la filtración de muestras en HPLC. También se usan en aplicaciones analíticas diversas y en la filtración de muestras de todo tipo, excepto de disolventes agresivos. Todo ello gracias a su estructura porosa uniforme y a su buena estabilidad química.

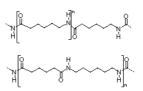
Están disponibles en formato no estéril y en diámetro 13, 25 y 30 mm


Ventajas

- □ Reacción al agua hidrofílica.
- ☐ Elevada adsorción no específica de
- ☐ Buen rango de compatibilidades químicas
- Bajo nivel de extractables
- Excelente resistencia física

Aplicaciones

- ☐Preparación de muestras acuosas y
- ☐ Filtración de muestras acuosas (no ácidas), disolventes orgánicos diluidos, etc.
- □Esterilización y clarificación de fluidos biológicos.
- □Filtración de agua industrial en la producción de semiconductores eléctricos.



- proteínas

- Buena capacidad de carga

- orgánicas en HPLC.

ESPECIFICACIONES TECNICAS

Punto de burbuja con agua (valor mínimo)

2.8 bar | 280 Kpa 0.22 µm 1.8 bar | 180 Kpa 0.45 µm

Caudal con agua (ml/min /cm²) △p=0.7 bar | 70 Kpa aprox.:

2.5 ml/min/cm² $0.22 \, \mu m$ 8.0 ml/min/cm² 0.45 µm

Espesor: 0.100 - 0.120 mm

Materiales

Membrana: Poliamida 66 (Nylon) Carcasa: Polipropileno (PP)

Diámetros: 13, 25, 30 mm.

Área de filtración

13 mm diámetro: 0.92 cm² 25 mm diámetro: 2.98 cm² 30 mm diámetro: 4.90 cm²

Temperatura máxima de uso ≤ 100°C

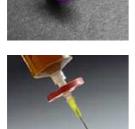
Máxima presión de trabajo: 87 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

13 mm diámetro: < 10 µl 25 mm diámetro: < 30 µl 30 mm diámetro: < 55 µl


Extraíbles con agua < 0.2%

Compatibilidad química: 3 - 12 pH

Reacción al agua: hidrofílica

Adsorción: Elevada adsorción no específica de

proteínas

Información para pedidos: Filtros jeringa de poliamida (Nylon)

	Código	Membrana	Carcasa	Diámetro	Poro	Entrada/Salida	Formato	Cantidad
	JNY022013N	Nylon	Polipropileno	13 mm.	0,22 _µ m	luer lock/luer slip	no estéril	100 unids.
۶	JNY022013R	Nylon	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no estéril	1000 unids.
0.22µm	JNY022025N	Nylon	Polipropileno	25 mm.	0,22 _µ m	luer lock/luer slip	no estéril	100 unids.
0.	JNY022025R	Nylon	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no estéril	1000 unids.
	JNY022030N	Nylon	Polipropileno	30 mm.	0,22 _µ m	luer lock/luer slip	no estéril	100 unids.
	JNY022030R	Nylon	Polipropileno	30 mm.	0,22 μ m	luer lock/luer slip	no estéril	1000 unids.
	JNY045013N	Nylon	Polipropileno	13 mm.	0,45 µm	luer lock/luer slip	no estéril	100 unids.
۶	JNY045013R	Nylon	Polipropileno	13 mm.	0,45 μ m	luer lock/luer slip	no estéril	1000 unids.
0.45µm	JNY045025N	Nylon	Polipropileno	25 mm.	0,45 _µ m	luer lock/luer slip	no estéril	100 unids.
0.7	JNY045025R	Nylon	Polipropileno	25 mm.	0,45 μ m	luer lock/luer slip	no estéril	1000 unids.
	JNY045030N	Nylon	Polipropileno	30 mm.	0,45 µm	luer lock/luer slip	no estéril	100 unids.
	JNY045030R	Nylon	Polipropileno	30 mm.	0,45 μ m	luer lock/luer slip	no estéril	1000 unids.

Filtros jeringa PTFE

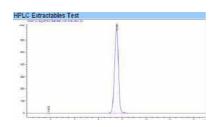
Recomendado en la filtración de muestras de disolventes agresivos, ácidos y bases, filtración de gases y aerosoles.

Descripción

La principal característica de estos filtros es su naturaleza hidrofóbica, lo cual no permite la filtración de muestras acuosas, pero en cambio es ideal en la filtración de gases y trabajos de venteo. Asimismo el politetrafluoruroetileno (PTFE) es un material extraordinariamente resistente a casi todos los disolventes y ácidos existentes, excepto el ácido fosfórico.

Están disponibles en formato no estéril y en 4, 13, 25 y 30 mm de diámetro.

Ventajas


- □ Naturaleza hidrofóbica, aunque se pueden filtrar muestras acuosas si la membrana se humedece con etanol o isopropanol.
- Es compatible con la mayoría de disolventes puros y ácidos, excepto con el ácido fosfórico.
- ☐ Elevados caudales de flujo.
- Excelente resistencia física.
- ☐ Amplia gama de diámetros

Aplicaciones

- ☐Filtración de muestras de disolventes agresivos, ácidos y bases.
- ☐Filtración de muestras en HPLC.
- □Desgasificación de disolventes.
- ☐ Esterilización de aire mediante venteo.
- ☐ Protección de bombas de vacio en equipos de filtración de laboratorio.
- ☐Muestreo de aerosoles.
- ☐Filtración de gases.

ESPECIFICACIONES TECNICAS

Punto de burbuja con alcohol (valor mínimo)

Caudal con alcohol (ml/min /cm 2) \triangle p=0.7 bar | 70 Kpa aprox.:

 $\begin{array}{ccc} 0.22~\mu\text{m} & 8~\text{ml/min/cm}^2 \\ 0.45~\mu\text{m} & 12~\text{ml/min/cm}^2 \end{array}$

Espesor: 0.190 - 0.250 mm

Materiales

Membrana: Politetrafluoruroetileno (PTFE)

Carcasa: Polipropileno (PP)

Diámetros: 4, 13, 25, 30 mm.

Área de filtración

4 mm diámetro: 0.125 cm² 13 mm diámetro: 0.92 cm² 25 mm diámetro: 2.98 cm² 30 mm diámetro: 4.90 cm²

Temperatura máxima de uso ≤ 130°C

Máxima presión de trabajo: 87 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

4 mm diámetro: $< 5 \mu l$ 13 mm diámetro: $< 10 \mu l$ 25 mm diámetro: $< 30 \mu l$ 30 mm diámetro: $< 55 \mu l$

Extraíbles con agua < 0.2%

Compatibilidad química: 1 – 14 pH

Reacción al agua: hidrofóbica

Esterilización: Mediante irradiación gamma,

óxido de etileno, autoclave a 121°C

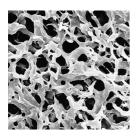
Información para pedidos: Filtros jeringa politetrafluoruroetileno (PTFE)

	Código	Membrana	Carcasa	Diámetro	Poro	Entrada/salida	Formato	Cantidad
	JPT022004K	PTFE	Polipropileno	4 mm.	0,22 _µ m	luer lock/luer slip	no estéril	50 unids.
	JPT022013N	PTFE	Polipropileno	13 mm.	0,22 _µ m	luer lock/luer slip	no estéril	100 unids.
ᆵ	JPT022013R	PTFE	Polipropileno	13 mm.	$0,22~\mu m$	luer lock/luer slip	no estéril	1000 unids.
.22 ₁	JPT022025N	PTFE	Polipropileno	25 mm.	$0,22~\mu m$	luer lock/luer slip	no estéril	100 unids.
0	JPT022025R	PTFE	Polipropileno	25 mm.	$0,22~\mu m$	luer lock/luer slip	no estéril	1000 unids.
	JPT022030N	PTFE	Polipropileno	30 mm.	$0,22~\mu m$	luer lock/luer slip	no estéril	100 unids.
	JPT022030R	PTFE	Polipropileno	30 mm.	$0,22~\mu m$	luer lock/luer slip	no estéril	1000 unids.
	JPT045004K	PTFE	Polipropileno	4 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	50 unids.
	JPT045013N	PTFE	Polipropileno	13 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	100 unids.
표	JPT045013R	PTFE	Polipropileno	13 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	1000 unids.
.45 _µ	JPT045025N	PTFE	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	100 unids.
0	JPT045025R	PTFE	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	1000 unids.
	JPT045030N	PTFE	Polipropileno	30 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	100 unids.
	JPT045030R	PTFE	Polipropileno	30 mm.	$0,45~\mu m$	luer lock/luer slip	no estéril	1000 unids.

Filtros jeringa Polifluoruro de Vinilideno (PVDF)

Recomendado en la filtración de muestras acuosas, biológicas, disolventes agresivos o diluidos y gases

H F C C H F I H F I H


Descripción

El Polifluoruro de Vinilideno (PVDF) es un material que posee excelentes características: Elevada estabilidad química y física, baja adsorción de proteínas, bajo nivel de extraíbles y una perfecta estructura porosa. Se fabrican dos tipos de membranas de PVDF: con reacción al agua hidrofílica y hidrofóbica.

El tipo hidrofílico puede ser utilizado en la clarificación y esterilización de muestras acuosas y biológicas, y en la filtración de disolventes agresivos, diluidos, alcoholes, ácidos, etc.

Mientras que la versión hidrofóbica es adecuada para la filtración de gases, vapores, y también de disolventes o muestras que no tengan un carácter acuoso.

Están disponibles en formato estéril y no estéril y en 13 y 25 mm de diámetro, también en 30 mm de diámetro.

Ventajas

- Reacción al agua en versiones hidrofílica y hidrofóbica
- □ Baja adsorción no específica de proteínas.
- Bajo nivel de extraíbles.
- Excelente compatibilidad química frente a un amplio rango de disolventes, ácidos y alcoholes.
- Certificación Rnase-free, Dnase-free, DNA-free (libre de ADN y ARN).
- ☐ Exento de pirogénicos

Aplicaciones

- ☐ Clarificación y esterilización de muestras acuosas y biológicas.
- Filtración de muestras de disolventes agresivos o diluidos.
- □ Control de fármacos.
- ☐ Filtración de muestras de alimentos

ESPECIFICACIONES TECNICAS

Punto de burbuja con alcohol (valor mínimo)

Caudal con alcohol (ml/min /cm 2) \triangle p=0.7 bar | 70 Kpa aprox.:

 $0.22 \ \mu m$ 8 ml/min/cm² $0.45 \ \mu m$ 12 ml/min/cm²

Espesor: 0.150 - 0.170 mm

Materiales

Membrana: Polifluoruro de Vinilideno (PVDF)

Carcasa: Polipropileno (PP)

Diámetros: 13, 25, y 30 mm.

Área de filtración

13 mm diámetro: 0.92 cm² 25 mm diámetro: 2.98 cm² 30 mm diámetro: 5,12 cm²

Temperatura máxima de uso: ≤ 100°C

Máxima presión de trabajo:

13 mm diámetro 3,45 bar 25 mm diámetro 6,55 bar 30 mm diámetro 6,89 bar

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

13 mm diámetro: < 10 μ l 25 mm diámetro: < 30 μ l 30 mm diámetro: < 55 μ l

Extraíbles con agua < 0.2%

Compatibilidad química: 1 – 14 pH

Reacción al agua: hidrofílica/hidrofóbica

Adsorción: Baja adsorción no específica de

proteínas

Información para pedidos: Filtros jeringa polifluoruro de Vinilideno (PVDF) hidrofílico

Aplicaciones: Filtración de muestras acuosas, biológicas, disolventes puros o diluídos

	Código	Membrana	Reaccion agua	Carcasa	Diámetro	Poro	Entrada/Salida	Formato	Cantidad
	JPVS022013K	PVDF	hidrofílica	Polipropileno	13 mm.	$0,22~\mu m$	luer lock/luer slip	esteril, ind.	50 unids.
	JPV022013N	PVDF	hidrofílica	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no esteril	100 unids.
	JPV022013R	PVDF	hidrofílica	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
_	JPVS022025K	PVDF	hidrofílica	Polipropileno	25 mm.	0,22 _µ m	luer lock/luer slip	esteril, ind.	50 unids.
22µm	JPV022025N	PVDF	hidrofílica	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no esteril	100 unids.
0.2	JPV022025R	PVDF	hidrofílica	Polipropileno	25 mm.	0,22 mm	luer lock/luer slip	no esteril	1000 unids.
	JPVS022030K	PVDF	hidrofílica	Polipropileno	30 mm.	0,22 mm	luer lock/luer slip	esteril, ind.	50 unids.
	JPV022030N	PVDF	hidrofílica	Polipropileno	30 mm.	0,22 mm	luer lock/luer slip	no esteril	100 unids.
	JPV022030R	PVDF	hidrofílica	Polipropileno	30 mm.	0,22 mm	luer lock/luer slip	no esteril	1000 unids.
	JPVS045013K	PVDF	hidrofílica	Polipropileno	13 mm.	0,45 μm	luer lock/luer slip	esteril, ind.	50 unids.
	JPV045013N	PVDF	hidrofílica	Polipropileno	13 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	100 unids.
	JPV045013R	PVDF	hidrofílica	Polipropileno	13 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	1000 unids.
_	JPVS045025K	PVDF	hidrofílica	Polipropileno	25 mm.	0,45 μm	luer lock/luer slip	esteril, ind.	50 unids.
.45µm	JPV045025N	PVDF	hidrofílica	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	100 unids.
0.4	JPV045025R	PVDF	hidrofílica	Polipropileno	25 mm.	0,45 mm	luer lock/luer slip	no esteril	1000 unids.
	JPVS045030K	PVDF	hidrofílica	Polipropileno	30 mm.	0,45 mm	luer lock/luer slip	esteril, ind.	50 unids.
	JPV045030N	PVDF	hidrofílica	Polipropileno	30 mm.	0,45 mm	luer lock/luer slip	no esteril	100 unids.
	JPV045030R	PVDF	hidrofílica	Polipropileno	30 mm.	0,45 mm	luer lock/luer slip	no esteril	1000 unids.

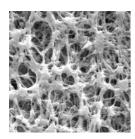
Información para pedidos: Filtros jeringa polifluoruro de Vinilideno (PVDF) hidrofóbico

Aplicaciones: Filtración de muestras con disolventes puros o diluídos, filtración de gases, vapores, etc.

	Código	Membrana	Reaccion agua	Carcasa	Diámetro	Poro	Entrada/Salida	Formato	Cantidad
	JPVFB022013N	PVDF	hidrofóbica	Polipropileno	13 mm.	$0,22~\mu m$	luer lock/luer slip	no esteril	100 unids.
_	JPVFB022013R	PVDF	hidrofóbica	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
2 µm	JPVFB022025N	PVDF	hidrofóbica	Polipropileno	25 mm.	0,22 µm	luer lock/luer slip	no esteril	100 unids.
0.22	JPVFB022025R	PVDF	hidrofóbica	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
	JPVFB022030N	PVDF	hidrofóbica	Polipropileno	30 mm.	0,22 _µ m	luer lock/luer slip	no esteril	100 unids.
	JPVFB022030R	PVDF	hidrofóbica	Polipropileno	30 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
	JPVFB045013N	PVDF	hidrofóbica	Polipropileno	13 mm.	0,45 μm	luer lock/luer slip	no esteril	100 unids.
_	JPVFB045013R	PVDF	hidrofóbica	Polipropileno	13 mm.	0,45 μ m	luer lock/luer slip	no esteril	1000 unids.
2 µm	JPVFB045025N	PVDF	hidrofóbica	Polipropileno	25 mm.	0,45 μm	luer lock/luer slip	no esteril	100 unids.
0.45	JPVFB045025R	PVDF	hidrofóbica	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	1000 unids.
	JPVFB045030N	PVDF	hidrofóbica	Polipropileno	30 mm.	0,45 μm	luer lock/luer slip	no esteril	100 unids.
	JPVFB045030R	PVDF	hidrofóbica	Polipropileno	30 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	1000 unids.

Filtros jeringa Polipropileno (PP)

Preparación de muestras acuosas y orgánicas en HPLC con elevado contenido de partículas.


Descripción

Los filtros jeringa de polipropileno (PP) FILTER-LAB® tienen su principal aplicación en la preparación de muestras acuosas o orgánicas, pero especialmente viscosas en HPLC. Su elevadísima pureza garantiza que no se produzcan picos extraños en los resultados.

Asimismo, su excelente resistencia y comportamiento hidrofílico le permiten su uso en muestras acuosas y orgánicas.

Estos filtros han superado durante su proceso de fabricación exigentes test de integridad con elevados niveles de presión de trabajo.

Están disponibles en formato no estéril y en 13 y 25 mm de diámetro con membrana de 0.22 y 0.45 µm.

Ventajas

- ☐ Reacción al agua hidrofílica.
- Bajísima adsorción no específica de proteínas.
- Bajo nivel de extraíbles.
- Excelente compatibilidad química frente a un gran número de disolventes.
- Garantía certificada en su uso con muestras acuosas y orgánicas en HPLC.
- ☐ Exento de pirogénicos.

Aplicaciones

- Preparación de muestras acuosas y orgánicas en HPLC.
- Filtración y clarificación de disolventes orgánicos.
- Filtración de muestras de medios de cultivo.
- □ Refractometría.

ESPECIFICACIONES TECNICAS

Punto de burbuja con alcohol (valor mínimo)

0.22 μm 2.8 bar | Kpa 0.45 μm 1.6 bar | Kpa

Caudal con alcohol (ml/min /cm 2) \triangle p= 0.7 bar | 70 Kpa aprox.:

 $\begin{array}{ccc} 0.22~\mu\text{m} & 60~\text{ml/min/cm}^2 \\ 0.45~\mu\text{m} & 140~\text{ml/min/cm}^2 \end{array}$

Espesor: 0.170 - 0.200 mm

Materiales

Membrana: Polipropileno (PP) Carcasa: Polipropileno (PP)

Diámetros: 13, 25 mm.

Área de filtración

13 mm diámetro: 0.92 cm² 25 mm diámetro: 2.98 cm²

Temperatura máxima de uso: 50°C

Máxima presión de trabajo:

13 mm diámetro 50 psi 25 mm diámetro 95 psi

Conectores

Entrada: Luer lock hembra Salida: Luer slip macho

Volumen muerto

13 mm diámetro: < 10 μ l 25 mm diámetro: < 30 μ l

Extraíbles con agua < 0.2%

Compatibilidad química: 1 – 14 pH

Reacción al agua: hidrofílica

Adsorción: Baja adsorción no específica de

proteínas

Información para pedidos: Filtros jeringa polipropileno (PP)

	Código	Membrana	Carcasa	Diámetro	Poro	Entrada/Salida	Formato	Cantidad
	JPP022013N	Polipropileno	Polipropileno	13 mm.	0,22 _µ m	luer lock/luer slip	no esteril	100 unids.
2µm	JPP022013R	Polipropileno	Polipropileno	13 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
0.22	JPP022025N	Polipropileno	Polipropileno	25 mm.	0,22 _µ m	luer lock/luer slip	no esteril	100 unids.
	JPP022025R	Polipropileno	Polipropileno	25 mm.	0,22 μ m	luer lock/luer slip	no esteril	1000 unids.
	JPP045013N	Polipropileno	Polipropileno	13 mm.	0,45 µm	luer lock/luer slip	no esteril	100 unids.
5µm	JPP045013R	Polipropileno	Polipropileno	13 mm.	0,45 μ m	luer lock/luer slip	no esteril	1000 unids.
0.45	JPP045025N	Polipropileno	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	100 unids.
	JPP045025R	Polipropileno	Polipropileno	25 mm.	$0,45~\mu m$	luer lock/luer slip	no esteril	1000 unids.

Tabla de compatibilidades químicas para filtros jeringa

Solventes	Acetato cel.	Fibra vidrio	Polipropileno	Poliamida	PTFE	Polietersulfona	PVDF
Aceite lubricante	?	✓	✓	✓	✓	×	✓
Aceite cacahuete	?	✓	✓	✓	✓	✓	✓
Aceite semillas algodón	?	✓	✓	✓	✓	?	✓
Aceite de sésamo	?	✓	✓	✓	✓	✓	✓
Acetona	×	✓	✓	✓	✓	*	-
Acetonitrilo	×	?		0	✓	✓	✓
Alcohol etílico 90%	✓	✓	✓	✓	✓	✓	?
Alcohol amílico	✓	✓	✓	✓	✓	✓	✓
Acohol bencílico	?	✓	✓	✓	✓	×	×
Agua	✓	✓	✓	✓	*	✓	✓
Amil acetato	×	?	?	0	✓	?	✓
Anilina	?	?			✓	*	✓
Benceno	×	✓	×		✓	✓	
n-Butil acetato	×	✓			✓	?	✓
n-Butanol	_	✓	✓	✓	✓	✓	✓
Cellosolve	×	· ✓	· ✓	?	· ✓	· ✓	✓
Cloroformo	×	·			·	×	-
Ciclohex ano	×	. ✓	✓	?	· ·	*	?
Ciclohex anano	×	→	→	?	→	×	
Cloruro de metileno	×	· ·	→	· ·	→	×	- ✓
Dicloroetileno		· ·	-		· ·	×	-
Dicloruro de metileno	×	?	-	×	· ·	×	-
Dietilacetamida	×	· ✓	×	~ ✓	· ·	?	?
Dietil-eter	?	→	~ ✓	→	→	?	· ✓
Dimetilformamida	×	→	√	→	· ·	*	×
Dimetilsulfóx ido	×	→	→	→	· ·	×	×
Dioxano	×	?	√	→	→	~	~ ✓
Etanol 98%	×	· ·	→	→	▼		√
Etil acetato		?	0	v	∨ ✓	•	∨
Etil eter		?			∨ ✓	✓	∨
Etileno glicol	?	· ·	√	×	~		
Fenol	· ·	?			∨		√
Formamida	?			?		?	?
		✓	√	: 	√	· · · · · · · · · · · · · · · · · · ·	· ·
Formaldehido 37%	?	?	<u> </u>	· · · · · · · · · · · · · · · · · · ·	✓	?	······································
Gasolina	✓	✓		0			-
Glicerina	✓	✓	✓	√	✓	0	√
n-Heptano	✓	✓	✓	√	√	√	√ .
n-Hexano	✓	✓	√	√	√	✓	√
sobutanol	0	✓	?	√	✓	?	?
sopropanol	0	✓	✓	√	✓	✓	✓
sopropil acetato		✓	✓	?	✓	✓	√
sopropil éter	×	?	✓	?	✓	?	√
Keroseno	✓	✓.	✓	?	✓	✓	✓
Vietanol 98%	×	✓	✓	?	✓	✓	✓
Metil acetato	×	?	✓	П	✓	*	✓
Metil etil cetona	×	✓	✓	0	✓	?	
Metil isobutil cetona	?	✓	✓		✓	×	
M onoclorobenzeno	?	✓	?	✓	✓	?	?
Niquel sulfato	?	✓	✓	✓	✓	?	✓
Vitrobenceno	?	✓	✓	✓	✓	?	?
n-Pentano	✓	✓	0	✓	✓	?	✓

Tabla de compatibilidades químicas para filtros jeringa

Solventes	Acetato cel.	Fibra vidrio	Polipropileno	Poliamida	PTFE	Polietersulfona	PVDF
Percloroetileno	0	✓		?	✓		0
Piridina	×	✓	0	0	✓	×	✓
Propileno glicol	?	?	✓	✓	✓	0	✓
Tetracloruro de carbón	0	✓	0	0	✓	0	0
Tetrahidrofurano	×	✓	0	×	✓	×	_
Tolueno	×	✓	×	×	✓	×	0
Trementina	?	?	0	?	✓	✓	✓
Tricloroetano	0	✓	✓	✓	✓	?	?
Tricloroetileno	?	✓	0		✓		×
Xileno	×	✓	×	0	✓	×	0

Ácidos	Acetato cel.	Fibra vidrio	Polipropileno	Poliamida	PTFE	Polietersulfona	PVDF
Ácido acético	✓	?	✓	×	✓	×	✓
Ácido fluorhídrico (6N)	×	?	×	×	✓	?	✓
Ácido fosfórico (conc.)	×	?	✓	×	✓	?	✓
Ácido nítrico (6N)	×	?	✓	×	✓	?	✓
Ácido nítrico (conc.)	×	?	✓	×	✓	?	✓
Ácido clorhídrico (6N)	×	?	✓	×	✓	✓	✓
Ácido clorhídrico (conc.)	×	?	✓	×	✓	✓	✓
Ácido sulfúrico (conc.)	*	?	✓	×	✓	×	✓

Bases	Acetato cel.	Fibra vidrio	Polipropileno	Poliamida	PTFE	Polietersulfona	PVDF
Amoniaco, 1N	✓	✓	?	✓	✓	✓	?
Hidróxido de amonio (1N)		0	✓	✓	✓	✓	0
Hidróxido de amonio (3N)	×	?	✓	✓	✓	✓	
Hidróxido de potasio (3N)	×	?	✓	✓	✓	✓	0
Hidróxido de sodio (3N)	×		✓	✓	✓	✓	_
Hidróxido de sodio (6N)		✓	✓	✓	✓	✓	×

Soluciones acuosas	Acetato cel.	Fibra vidrio	Polipropileno	Poliamida	PTFE	Polietersulfona	PVDF
Formamida 30%	?	✓	?	0	✓	✓	✓
Hipoclorito de sodio 5%	✓	✓	?		✓	?	?
Peróxido de hidrógeno 35%	✓	?	?	0	✓	?	?

Clave de símbolos

 \checkmark = compatible = compatibilidad limitada \times = no compatible ? = no testado

Portafiltros de Policarbonato de 13 mm de diámetro

Filtración de muestras acuosas de pequeño volumen

Descripción

Económico portafiltros fabricado en policarbonato transparente. Es autoclavable. Contiene una junta de silicona para evitar la fuga de líquido. Puede trabajar con presiones de hasta 7 bar y se puede filtrar en ambas direcciones.

Ventajas

- Bajo volumen muerto
- ☐ Facilidad de limpieza
- ☐ Esterilizable a 121°C

Aplicaciones

☐ Filtración de pequeñas muestras acuosas

Información para pedidos. Portafiltros policarbonato 13 mm diámetro

Cod.	Descripción
16514E-2	Portafiltros policarbonato de 13 mm diámetro. Caja 2 unids.
16514E	Portafiltros policarbonato de 13 mm diámetro. Caja 12 unids.
6980569	Repuesto de junta de silicona. Bolsa 10 unidades

ESPECIFICACIONES TECNICAS

Conectores

Entrada Luer lock hembra Salida Luer slip macho

Caudal con agua (ml/min /cm²)△p= 1 bar | 100 Kpa aprox.:

 $\begin{array}{ll} \mbox{Membrana de 0.22 } \mbox{μm} & \mbox{18 ml/min aprox.} \\ \mbox{Membrana de 0.45 } \mbox{μm} & \mbox{35 ml/min aprox.} \end{array}$

Compatibilidad química: La misma que el

policarbonato y la silicona

Materiales: Policarbonato (cuerpo) y silicona

(junta)

Área de filtración: 0.5 cm²

Peso: 13 g

Máxima presión de trabajo: 7 bar (700 kPa,

101,57 psi)

Medida filtro membrana: 13 mm diámetro

Volumen muerto

< 0.2 ml despues de alcanzar el punto de burbuja,

0.3 ml antes

Esterilización: Autoclave (max. 121°C)

Portafiltros de PTFE de 13 mm de diámetro

Filtración de muestras de productos agresivos de pequeño volumen

Descripción

Portafiltros construído en PTFE para la ultralimpieza de pequeños volúmenes (mas de 10 ml aprox.). El PTFE es un material inerte que no aporta trazas de elementos y por ello es muy adecuado en la eliminación de partículas en pequeñas muestras de productos agresivos.

Este portafiltros no tiene anillo de secado, lo cual evita la torsión de la membrana cuando la parte superior se aprieta a la base.

Ventajas

- ☐ Extraordinaria resistencia a disolventes agresivos
- Bajo volumen muerto.
- ☐ Facilidad de limpieza.
- ☐ Secado a 180°C.
- Esterilizable.

Aplicaciones

☐ Filtración de pequeños volúmenes de muestras de disolventes agresivos y todo tipo de líquidos.

Información para pedidos. Portafiltros PTFE 13 mm diámetro

Cod.	Descripción
16574	Portafiltros PTFE de 13 mm diámetro

ESPECIFICACIONES TECNICAS

Conectores

Entrada Luer lock hembra Luer slip macho Salida

Caudal con agua (ml/min /cm²) △p= 1 bar | 100

Kpa aprox.:

Membrana de 0.22 µm 10 ml/min aprox. Membrana de 0.45 µm 18 ml/min aprox.

Compatibilidad química: La misma que el PTFE

Materiales: PTFE 100% Área de filtración: 0.5 cm²

Peso: 13 g

Máxima presión de trabajo: 5 bar (500 kPa, 72.5

Medida filtro membrana: 13 mm diámetro

Volumen muerto

< 0.03 ml despues de alcanzar el punto de

burbuja, 0.3 ml antes

Esterilización: Autoclave (max. 134°C) o calor

seco (max. 180°C

Portafiltros de Policarbonato de 25 mm de diámetro

Filtración de muestras acuosas

Descripción

Económico portafiltros fabricado en policarbonato transparente. Es autoclavable. Una junta de silicona impide la fuga de líquido. Puede trabajar con presiones de hasta 7 bar . Se utiliza de manera habitual en la filtración de muestras acuosas. Funciona con membranas de 25 mm de diámetro.

Ventajas

- Bajo volumen muerto.
- ☐ Facilidad de limpieza.
- ☐ Esterilizable a 121°C.

Aplicaciones

☐ Filtración de muestras acuosas

Información para pedidos. Portafiltros policarbonato 25 mm diámetro

Cod.	Descripción
16517E	Portafiltros policarbonato de 25 mm diámetro. Caja 12 unids.
16517E-2	Portafiltros policarbonato de 25 mm diámetro. Caja 2 unids.
1EDS-D0055	Repuesto de junta de silicona. Bolsa 10 unidades

ESPECIFICACIONES TECNICAS

Conectores

Entrada Luer lock hembra Salida Luer slip macho

Caudal con agua (ml/min /cm²)△p= 1 bar | 100 Kpa aprox.:

 $\begin{array}{ll} \mbox{Membrana de 0.22 } \mbox{μm} & \mbox{70 ml/min aprox.} \\ \mbox{Membrana de 0.45 } \mbox{μm} & \mbox{110 ml/min aprox.} \end{array}$

Compatibilidad química: La misma que el

policarbonato y la silicona

Materiales: Policarbonato en las piezas y silicona

en la junta (20.5 x 26.5 mm)

Área de filtración: 3 cm²

Máxima presión de trabajo: 7 bar (700 kPa,

101,57 psi)

Medida filtro membrana: 25 mm diámetro

Volumen muerto

< 0.3 ml despues de alcanzar el punto de burbuja,

0.6 ml antes

Esterilización: Autoclave (max. 121°C)

Portafiltros acero inoxidable de 25 mm de diámetro

Filtración de muestras con disolventes y productos químicos

Descripción

Portafiltros fabricado en acero inoxidable para usar con disolventes y productos químicos. La superficie de la parte superior está recubierta de PTFE, lo cual garantiza la estanqueidad sin necesidad de una junta, con lo que la resistencia al calor es elevada. La compatibilidad química depende del filtro insertado. La filtración se puede hacer en los dos sentidos.

Ventajas

- ☐ Elevada compatibilidad química.
- ☐ Facilidad de limpieza.
- ☐ Esterilizable a 121°C.
- No necesita junta de estanqueidad.

Aplicaciones

☐ Filtración de muestras acuosas, disolventes y productos químicos.

Información para pedidos. Portafiltros acero inoxidable de 25 mm diámetro

Cod.	Descripción
16214	Portafiltros acero inoxidable de 25 mm diámetro
6980595	Recubrimiento de sellado

ESPECIFICACIONES TECNICAS

Conectores

Entrada Luer lock hembra Salida Luer slip macho

Caudal con agua (ml/min /cm²)△p= 1 bar | 100 Kpa aprox.:

Membrana de $0.22~\mu m$ 45 ml/min aprox. Membrana de $0.45~\mu m$ 80 ml/min aprox.

Compatibilidad química: La misma que el acero inoxidable y el PTFE

Materiales: Acero inoxidable (1.4305) piezas superior e inferior. PTFE en la zona de recubrimiento en la pieza superior . Luran 368R en la zona de presión de las piezas

Área de filtración: 3 cm²

Máxima presión de trabajo: 7 bar (700 kPa,

101,57 psi)

Medida filtro membrana: 25 mm diámetro

Volumen muerto

< 0.1 ml despues de alcanzar el punto de burbuja, 0.3 ml antes

Esterilización: Autoclave (max. 134°C) o calor seco (max. 180°C)

Portafiltros acero inoxidable de 25 mm de diámetro

Filtración de líquidos en líneas de producción industrial

Descripción

Fabricado en acero inoxidable y utilizado en continuo en líneas de producción de la industria.

Conexiones de entrada y salida para manguera de 10 mm de diámetro

Ventajas

☐ Facilidad de limpieza☐ Esterilizable a 134°C

Aplicaciones

☐ Filtración de líquidos en líneas industriales

Información para pedidos. Portafiltros acero inoxidable de 25 mm diámetro

Cod.	Descripción
16251	Portafiltros acero inoxidable de 25 mm diámetro para filtración en línea
6980176	Conector
6981031	Parte superior
6981032	Base
6981034	Cierre

ESPECIFICACIONES TECNICAS

Conectores

Manguera de 10 mm de diámetro

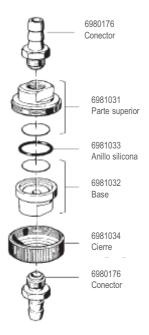
Caudal con agua (ml/min /cm²)△p= 1 bar | 100 Kpa aprox.:

 $\begin{array}{ll} \mbox{Membrana de 0.22 } \mbox{μm} & 0.5 \mbox{ l/min aprox.} \\ \mbox{Membrana de 0.45 } \mbox{μm} & 1.0 \mbox{ l/min aprox.} \end{array}$

Compatibilidad química: La misma que el acero inoxidable, excepto las piezas de silicona.

Materiales: Acero inoxidable, excepto las piezas de silicona, junta tórica (21 x 2 mm) y anillo de cierre de aluminio

Peso: 170 g


Máxima presión de trabajo: 5 bar (500 kPa, 72,5

psi)

Medida filtro membrana: 25 mm diámetro

Esterilización: Autoclave (max. 134°C) o calor

seco (max. 180°C)

Portafiltros acero inoxidable de 47 mm de diámetro

Filtración de líquidos en líneas de producción industrial

Descripción

Fabricado en acero inoxidable y utilizado en continuo en líneas de producción de la industria.

Soporta presiones de hasta 20 bar.

Dispone de una salida lateral para el exceso de líquido.

Se conecta a manguera de 10 mm de diámetro, pero acepta conexiones G3/8 hembra como accesorio.

Ventajas

☐ Facilidad de limpieza

☐ Esterilizable a 134°C

Aplicaciones

☐ Filtración de líquidos en líneas industriales

Información para pedidos. Portafiltros acero inoxidable de 25 mm diámetro

Cod.	Descripción
16254	Portafiltros acero inoxidable de 47 mm diámetro para filtración en línea
6980722	Válvula
6980656	Junta
6980717	Anillo de vitón
6982005	Cierre anillo
6982003	Parte superior
6980721	Pantalla contrapresión
6980178	Anillo silicona
6980180	Pantalla soporte
6980737	Rejilla soporte
6982006	Placa base
6980801	C onector
	·

ESPECIFICACIONES TECNICAS

Conectores

Manguera de 10 mm de diámetro

Caudal con agua (ml/min /cm²)△p= 1 bar | 100 Kpa aprox.:

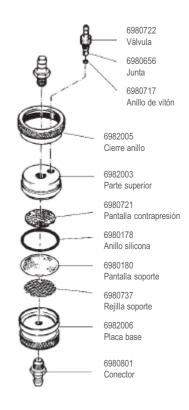
 $\begin{array}{ll} \mbox{Membrana de 0.22 } \mbox{μm} & 0.5 \mbox{ l/min aprox.} \\ \mbox{Membrana de 0.45 } \mbox{μm} & 1.0 \mbox{ l/min aprox.} \end{array}$

Compatibilidad química: La misma que el acero inoxidable, excepto las piezas de silicona.

Materiales: Acero inoxidable, excepto la junta de silicona (42 x 3 mm), PTFE y vitón en las válvulas de sellado

Área de filtración: 13 cm²

Peso: 490 g


Máxima presión de trabajo: 20 bar (2000 kPa,

190 psi)

Medida filtro membrana: 47 mm diámetro

Esterilización: Autoclave (max. 134°C) o calor

seco (max. 180°C)

Portafiltros policarbonato de 47 mm de diámetro

Filtración de muestras de líquidos diversos

Descripción

Este portafiltros de 47 mm de diámetro está fabricado con policarbonato. Se trata de un elemento muy práctico en múltiples filtraciones de laboratorio. Puede ser conectado a una bomba peristáltica o a una bombona de presión. La base, en forma de campana protege el líquido de cualquier contaminación. Otra característica es su elevada resistencia a la presión. Las piezas son transparentes para una perfecta visualización del asiento correcto de la junta tórica.

Los conectores de la manguera pueden ser sustituidos por conectores luer para usarlo como una jeringa de gran superficie.

Ventajas

- ☐ Elevada resistencia a la presión (7 bar)
- ☐ Esterilizable a 121°C
- ☐ Piezas transparentes para ver el asiento de la junta tórica.

Aplicaciones

☐ Filtración de muestras acuosas de elevado volumen.

Información para pedidos. Portafiltros policarbonato de 47 mm diámetro

Cod.	Descripción
16508B	Portafiltros policarbonato de 47 mm diámetro. Caja 5 unids.
16508B-1	Portafiltros policarbonato de 47 mm diámetro. Caja 1 portafiltros
6985004	Conector
6980232	Soporte del filtro
6980110	Junta de silicona
6980383	Base

ESPECIFICACIONES TECNICAS

Conectores a presión: Manguera de 10 mm de diámetro

Conectores a rosca: M12 x 1 rosca hembra

Caudal con agua (ml/min /cm²)△p= 1 bar | 100 Kpa aprox.:

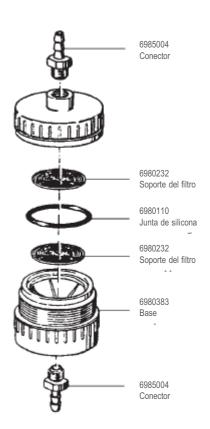
Membrana de 0.22 μ m 150 ml/min aprox. Membrana de 0.45 μ m 320 ml/min aprox.

Compatibilidad química: La misma que el policarbonato excepto las piezas de silicona.

Materiales: Policarbonato en la parte superior, base y conectores entrada y salida. Soportes de filtro de polipropileno. Junta tórica de silicona (40 x 5 mm)

Área de filtración: 12.5 cm²

Peso: 83 g


Máxima presión de trabajo: 7 bar (700 kPa, 66.5

psi)

Medida filtro membrana: 47 - 50 mm diámetro

Esterilización: Autoclave (max. 121°C)

Resistencia: El material resiste repetidos ciclos siempre que los agentes de limpieza agresivos son lavados y el agua de caldera no contiene aditivos anti-corrosivos.

Accesorios filtros jeringa

Pistola dosificadora, jeringuillas y agujas

Jeringa dosificadora

Sistema de dosificación, en combinación con nuestros filtros jeringa, para una rápida filtración y dosificación.

Es muy adecuado para la humectación de medios de cultivo deshidratados en laboratorios de análisis microbiológico.

El volumen de dosificación se puede ajustar infinitamente entre $0.5\,\mathrm{y}\,5.0\,\mathrm{ml}$, tan solo girando el tornillo de la empuñadura.

Es muy fácil de manejar y evita la fatiga de la mano después de un uso prolongado.

Válvula de 3 vías

Permite la filtración en continuo

Jeringuillas desechables

Conexión adaptada a filtros jeringa luer lock hembra.

Agujas

Se pueden conectar a la salida del filtro jeringa. Las agujas de acero inoxidable son autoclavables.

Información para pedidos

Jeringa dosificadora

Cod.	Descripción
16685-2	Pistola dosificadora
16639	Válvula de 3 vías (autoclavable 121°C)

Piezas de recambio

Cod.	Descripción
6986070	Junta de sellado. 4 unidades
6986071	Resorte de presión. 2 unidades
6986072	Muelle de fijación. 2 unidades
6986073	Válvula. 2 unidades

Jeringuillas

01324

01325

Cod.	Descripción
16644E	Volumen 5 ml. Caja 12 unidades
16645E	Volumen 10 ml. Caja 12 unidades
16646E	Volumen 20 ml. Caja 12 unidades
16647E	Volumen 50 ml. Caja 12 unidades
Agujas	
Cod.	Descripción

Agujas acero inoxidable

Agujas desechables

Filtros venteo estériles

Descripción

Unidades de filtración para la ventilación estéril de fermentadores pequeños v contenedores de medios de cultivo. Tiene un diámetro interior de 6,12 mm de diámetro y incorpora una membrana hidrofóbica de PTFE reforzada con polipropileno para resistir presiones de 3 bar (43.5 psi).

Sus 20 cm² de superficie de filtración garantizan un elevado caudal con bajo diferencial de presión.

Cada unidad lleva impresa el nº de lote y un nº de unidad para su total trazabilidad y seguridad.

Unidades para ventilación estéril en pequeños contenedores y botellas.

Se trata de unidades con carcasa de cirolita con membrana de PTFE de 0.2 µm reforzada con poliester. Tiene conexiones luer lock.

Aplicaciones

- Ventilación estéril de pequeños fermentadores y contenedores de medios de cultivo.
- ☐ Protección de bombas de vacío en sistemas de filtración de líquidos.

Especificaciones técnicas para filtros venteo

Conectores Diferentes tipos de conectores cónicos a manguera de 6-12 mm de diámetro interior (con (antideslizantes apto para jeringas luer)

ó conexión macho 1/8" NPT.

Seguridad biotecnológica Todos los materiales plásticos han pasado la prueba USP

Punto de burbuja Valor mínimo con isopropanol para membrana de 0.2 µm 1.4

bar (140 kPa, 20.3 psi) (1.1 bar despues de autoclave) y 0.9 bar

(90 kPa, 13 psi) para 0.45 µm.

Caudal de aire Valores típicos para 0.2 µm de tamaño de poro:

1.1 l/min a 0.02 bar (1.8 l/min para 0.45 µm 2.0 l/min a 0.05 bar (4.6 l/min para 0.45 µm 5.0 l/min a 0.1 bar (8.5 l/min para 0.45 µm

Área de filtración 20 cm² Volumen de llenado Aprox. 3 ml Diámetro de la carcasa 62 mm

Materiales Membrana: PTFE reforzado con malla de polipropileno.

Carcasa: polipropileno 3 bar (300 kPa, 43.5 psi)

134°C Máxima temperatura

Máxima presión de trabajo

Volumen muerto

Métodos de esterilización

Mediante autoclave a 121°C (al menos 20 veces) ó 134°C.

Modelos E y G son preesterilizados con óxido de etileno. aprox. 0.5 ml después del punto de burbuja. 1 ml antes.

Punto penetración de aqua Membrana 0.2 µm: 4.0 bar (58 psi)

Membrana 0.45 µm: 3.0 bar (43.5 psi)

Especificaciones técnicas para unidades HY

Punto de burbuja Valor mínimo con isopropanol: 1.2 bar (17.4 psi) Caudal con aire Aprox. 1.4 l/min a $\triangle p = 0.1$ bar (1.45 psi)

Área de filtración 5.2 cm2

Presión máxima en la carcasa Valor mínimo 6.0 bar (600 kPa, 87 psi) Punto de penetración de agua Mínimo 4.0 bar (400 kPa, 58 psi)

